The local well-posedness and existence of weak solutions for a generalized Camassa-Holm equation

被引:65
作者
Lai, Shaoyong [1 ]
Wu, Yonghong [2 ]
机构
[1] SW Univ Finance & Econ, Dept Appl Math, Chengdu 610074, Peoples R China
[2] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
关键词
Local well-posedness; Weak solution; Generalized Camassa-Holm equation; High order nonlinear terms; Pseudoparabolic regularization method; SHALLOW-WATER EQUATION; SOLITARY WAVE SOLUTIONS; GEODESIC-FLOW; STABILITY; WELLPOSEDNESS; TRAJECTORIES; BREAKING; SOLITONS; COMPACT; PEAKONS;
D O I
10.1016/j.jde.2010.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A generalization of the Camassa-Holm equation, a model for shallow water waves, is investigated Using the pseudoparabolic regularization technique, its local well-posedness in Sobolev space H(s)(R) with s > 2 is established via a limiting procedure In addition, a sufficient condition for the existence of weak solutions of the equation in lower order Sobolev space H(s) with 1 < s <= 3/2 Is developed (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:2038 / 2063
页数:26
相关论文
共 48 条
[1]  
[Anonymous], J PHYS A
[2]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[3]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[4]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[5]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[6]   Well-posedness of higher-order Camassa-Holm equations [J].
Coclite, G. M. ;
Holden, H. ;
Kadsen, K. H. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :929-963
[7]   Global weak solutions to a generalized hyperelastic-rod wave equation [J].
Coclite, GM ;
Holden, H ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (04) :1044-1069
[8]  
Coclite GM, 2005, DISCRETE CONT DYN-A, V13, P659
[9]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[10]   On geodesic exponential maps of the Virasoro group [J].
Constantin, A. ;
Kappeler, T. ;
Kolev, B. ;
Topalov, P. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (02) :155-180