Yield, growth and grain nitrogen response to elevated CO2 in six lentil (Lens culinaris) cultivars grown under Free Air CO2 Enrichment (FACE) in a semi-arid environment

被引:27
|
作者
Bourgault, M. [1 ,4 ]
Brand, J. [2 ]
Tausz-Posch, S. [1 ,5 ]
Armstrong, R. D. [2 ]
O'Leary, G. L. [2 ]
Fitzgerald, G. J. [2 ]
Tausz, M. [3 ,6 ]
机构
[1] Univ Melbourne, Fac Vet & Agr Sci, 4 Water St, Creswick, Vic 3363, Australia
[2] Agr Victoria, Grains Innovat Pk,110 Natimuk Rct, Horsham, Vic 3401, Australia
[3] Univ Melbourne, Fac Sci, 4 Water St, Creswick, Vic 3363, Australia
[4] Montana State Univ, Northern Agr Res Ctr, 3710 Assinniboine Rd, Havre, MT 59501 USA
[5] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
[6] Univ Birmingham, Birmingham Inst Forest Res, Birmingham B15 2TT, W Midlands, England
关键词
Source-sink relationships; Physiological pre-breeding; Climate change adaptation; Terminal drought; CARBON-DIOXIDE; ATMOSPHERIC CO2; WHEAT CULTIVAR; SEED YIELD; FIELD; PHOTOSYNTHESIS; CROP; TRANSPIRATION; ASSIMILATION; FIXATION;
D O I
10.1016/j.eja.2017.05.003
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Atmospheric CO2 concentrations ([CO2]) are predicted to increase from current levels of about 400 ppm to reach 550 ppm by 2050. The direct benefits of elevated [CO2] (e[CO2]) to plant growth appear to be greater under low rainfall conditions, but there are few field (Free Air CO2 Enrichment or FACE) experimental set-ups that directly address semi-arid conditions. The objectives of this study were to investigate the following research questions: 1) What are the effects of e[CO2] on the growth and grain yield of lentil (Lens culinaris) grown under semi-arid conditions under FACE? 2) Does e [CO2] decrease grain nitrogen in lentil? and 3) Is there genotypic variability in the response to e[CO2] in lentil cultivars? Elevated [CO2] increased yields by approximately 0.5 t ha(-1) (relative increase ranging from 18 to 138%) by increasing both biomass accumulation (by 32%) and the harvest index (by up to 60%). However, the relative response of grain yield to e[CO2] was not consistently greater under dry conditions and might depend on water availability post-flowering. Grain nitrogen concentration was significantly reduced by e[CO2] under the conditions of this experiment. No differences were found between the cultivars selected in the response to elevated [CO2] for grain yield or any other parameters observed despite well expressed genotypic variability in many traits of interest. Biomass accumulation from flowering to maturity was considerably increased by elevated [CO2] (a 50% increase) which suggests that the indeterminate growth habit of lentils provides vegetative sinks in addition to reproductive sinks during the grain-filling period.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 50 条
  • [21] Effects of Elevated Atmospheric CO2 on Respiratory Rates in Mature Leaves of Two Rice Cultivars Grown at a Free-Air CO2 Enrichment Site and Analyses of the Underlying Mechanisms
    Noguchi, Ko
    Tsunoda, Tomonori
    Miyagi, Atsuko
    Kawai-Yamada, Maki
    Sugiura, Daisuke
    Miyazawa, Shin-Ichi
    Tokida, Takeshi
    Usui, Yasuhiro
    Nakamura, Hirofumi
    Sakai, Hidemitsu
    Hasegawa, Toshihiro
    PLANT AND CELL PHYSIOLOGY, 2018, 59 (03) : 637 - 649
  • [22] Open top chamber and free air CO2 enrichment - approaches to investigate tree responses to elevated CO2
    Machacova, K.
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2010, 3 : 102 - 105
  • [23] Elevated CO2 (free-air CO2 enrichment) increases grain yield of aluminium-resistant but not aluminium-sensitive wheat (Triticum aestivum) grown in an acid soil
    Dong, Jinlong
    Grylls, Stephen
    Hunt, James
    Armstrong, Roger
    Delhaize, Emmanuel
    Tang, Caixian
    ANNALS OF BOTANY, 2019, 123 (03) : 461 - 468
  • [24] Is there potential to adapt soybean (Glycine maxMerr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment
    Bishop, Kristen A.
    Betzelberger, Amy M.
    Long, Stephen P.
    Ainsworth, Elizabeth A.
    PLANT CELL AND ENVIRONMENT, 2015, 38 (09) : 1765 - 1774
  • [25] Simulation of climate change impacts on grain sorghum production grown under free air CO2 enrichment
    Fu, Tongcheng
    Ko, Jonghan
    Wall, Gerard W.
    Pinter, Paul J., Jr.
    Kimball, Bruce A.
    Ottman, Michael J.
    Kim, Han-Yong
    INTERNATIONAL AGROPHYSICS, 2016, 30 (03) : 311 - 322
  • [26] Growth, seed yield and nutritional characteristics of pigeonpea grown under elevated CO2 atmosphere
    Unnikrishnan, Divya K.
    Sreeharsha, Rachapudi, V
    Reddy, Attipalli R.
    ACTA PHYSIOLOGIAE PLANTARUM, 2021, 43 (05)
  • [27] Ecophysiology of deciduous trees native to Northeast Asia grown under FACE (Free Air CO2 Enrichment)
    Koike, Takayoshi
    Watanabe, Makoto
    Watanabe, Yoko
    Agathokleous, Evgenios
    Eguchi, Norikazu
    Takagi, Kentaro
    Satoh, Fuyuki
    Kitaoka, Satoshi
    Funada, Ryo
    JOURNAL OF AGRICULTURAL METEOROLOGY, 2015, 71 (03) : 174 - 184
  • [28] Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments
    Hasegawa, Toshihiro
    Li, Tao
    Yin, Xinyou
    Zhu, Yan
    Boote, Kenneth
    Baker, Jeffrey
    Bregaglio, Simone
    Buis, Samuel
    Confalonieri, Roberto
    Fugice, Job
    Fumoto, Tamon
    Gaydon, Donald
    Kumar, Soora Naresh
    Lafarge, Tanguy
    Marcaida, Manuel, III
    Masutomi, Yuji
    Nakagawa, Hiroshi
    Oriol, Philippe
    Ruget, Francoise
    Singh, Upendra
    Tang, Liang
    Tao, Fulu
    Wakatsuki, Hitomi
    Wallach, Daniel
    Wang, Yulong
    Wilson, Lloyd Ted
    Yang, Lianxin
    Yang, Yubin
    Yoshida, Hiroe
    Zhang, Zhao
    Zhu, Jianguo
    SCIENTIFIC REPORTS, 2017, 7
  • [29] Soil development under elevated CO2 affects plant growth responses to CO2 enrichment
    Edwards, GR
    Clark, H
    Newton, PCD
    BASIC AND APPLIED ECOLOGY, 2003, 4 (02) : 185 - 195
  • [30] Coffee growth, pest and yield responses to free-air CO2 enrichment
    Ghini, Raquel
    Torre-Neto, Andre
    Dentzien, Anamaria F. M.
    Guerreiro-Filho, Oliveiro
    Iost, Regiane
    Patricio, Flavia R. A.
    Prado, Jeanne S. M.
    Thomaziello, Roberto A.
    Bettiol, Wagner
    DaMatta, Fabio M.
    CLIMATIC CHANGE, 2015, 132 (02) : 307 - 320