Porous SnO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries

被引:41
作者
Yan, Yuan [1 ]
Du, Feihu [2 ]
Shen, Xiaoping [1 ]
Ji, Zhenyuan [1 ]
Zhou, Hu [3 ]
Zhu, Guoxing [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国博士后科学基金;
关键词
OXIDE HOLLOW NANOSTRUCTURES; METAL-ORGANIC-FRAMEWORKS; ANODE MATERIAL; ALPHA-FE2O3; STORAGE; CAPACITY; SNO2; FABRICATION; PARTICLES; GROWTH;
D O I
10.1039/c4dt02028f
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Mixed oxide SnO2-Fe2O3 porous nanocubes were prepared by simply annealing the precursor of Sn-3[Fe(CN)(6)](4) nanocubes, which were obtained through a facile solvothermal method. Calcination of the precursor at 350 degrees C produced uniform SnO2-Fe2O3 nanocubes without obvious morphological deformation, but with lots of open void space in the nanocubes. The Brunauer-Emmett-Teller N-2 adsorption-desorption analysis shows that the as-synthesized SnO2-Fe2O3 has a specific surface area of 170.2 m(2) g(-1) with a pore size of around 5 nm. The porous SnO2-Fe2O3 nanocubes as anode materials for the lithium-ion battery show a high initial capacity of 1020.2 mA h g(-1) at a current density of 200 mA g(-1) and maintain at 567.5 mA h g(-1) at the 50th cycle, which is distinctly higher than those reported for SnO2-based materials. The enhanced performance towards lithium storage can be ascribed to the high specific area, an appropriate pore size and the synergistic effect of SnO2 and Fe2O3.
引用
收藏
页码:17544 / 17550
页数:7
相关论文
共 50 条
[41]   Hierarchical Fe2O3@C@MnO2@C Multishell Nanocomposites for High Performance Lithium Ion Batteries and Catalysts [J].
Zhang, Yu ;
Li, Qing ;
Liu, Jiwei ;
You, Wenbin ;
Fang, Fang ;
Wang, Min ;
Che, Renchao .
LANGMUIR, 2018, 34 (18) :5225-5233
[42]   Porous Flower-like α-Fe2O3 Nanostructure: A High Performance Anode Material for Lithium-ion Batteries [J].
Penki, Tirupathi Rao ;
Shivakumara, S. ;
Minakshi, M. ;
Munichandraiah, N. .
ELECTROCHIMICA ACTA, 2015, 167 :330-339
[43]   Enhanced electrochemical performance of nanomilling Co2SnO4/C materials for lithium ion batteries [J].
An, Bonan ;
Ru, Qiang ;
Hu, Shejun ;
Song, Xiong ;
Chen, Chang .
IONICS, 2015, 21 (09) :2485-2493
[44]   Enhanced Electrochemical Performance of CNTs/α-Fe2O3/PPy Composite as Anode Material for Lithium Ion Batteries [J].
Luo, Dawei ;
Wu, Jieda ;
Ni, Yongji ;
Wang, Chengcheng ;
Zhao, Ning .
TRANSACTIONS OF THE INDIAN CERAMIC SOCIETY, 2019, 78 (01) :34-40
[45]   Preparation and Electrochemical Performance of Porous α-Fe2O3 Nanospheres Anode Materials for Na-Ion Batteries [J].
Liang Peng ;
Wang Chang'an .
RARE METAL MATERIALS AND ENGINEERING, 2018, 47 :190-194
[46]   α-Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries [J].
Lin, Yong-Mao ;
Abel, Paul R. ;
Heller, Adam ;
Mullins, C. Buddie .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (22) :2885-2891
[47]   Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries [J].
Sun, Yan-Hui ;
Liu, Shan ;
Zhou, Feng-Chen ;
Nan, Jun-Min .
APPLIED SURFACE SCIENCE, 2016, 390 :175-184
[48]   Three-dimensional porous nano-Ni/Fe3O4 composite film: enhanced electrochemical performance for lithium-ion batteries [J].
Xiong, Qin-qin ;
Tu, Jiang-ping ;
Lu, Yi ;
Chen, Jiao ;
Yu, Ying-xia ;
Wang, Xiu-li ;
Gu, Chang-dong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (35) :18639-18645
[49]   Synthesis of Cd2SnO4-SnO2 hybrid micro-cubes with enhanced electrochemical performance for lithium-ion batteries [J].
Wang, Wei ;
Xiao, Ying ;
Zhao, Xinyu ;
Liu, Bing ;
Cao, Minhua .
CRYSTENGCOMM, 2014, 16 (05) :922-929
[50]   Electrochemical Properties of Fe2O3/Ga2O3 Composite Electrodes for Lithium-ion Batteries [J].
Ishizaki, Haruo ;
Kijima, Norihito ;
Yoshinaga, Masashi ;
Akimoto, Junji .
ELECTROCERAMICS IN JAPAN XV, 2013, 566 :119-122