Trust-Evaluation-Based Intrusion Detection and Reinforcement Learning in Autonomous Driving

被引:24
|
作者
Xing, Rui [1 ]
Su, Zhou [2 ]
Zhang, Ning [4 ]
Peng, Yan [3 ]
Pu, Huayan [1 ]
Luo, Jun [2 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai, Peoples R China
[2] Shanghai Univ, Shanghai, Peoples R China
[3] Shanghai Univ, Res Inst USV Engn, Shanghai, Peoples R China
[4] Texas A&M Univ Christi, Corpus Christi, TX USA
来源
IEEE NETWORK | 2019年 / 33卷 / 05期
关键词
Intrusion detection; Reinforcement learning; Autonomous vehicles; Servers; Accidents; Vehicle safety; Internet of Things; SCHEME;
D O I
10.1109/MNET.001.1800535
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With ever-increasing penetration of autonomous driving vehicles (ADVs), security becomes of significant essence to autonomous vehicular networks (AVNs). On one hand, although cryptographic systems help deal with various attacks, they cannot resolve inside attacks from compromised or malfunctioning ADVs. On the other hand, ADVs with higher automated levels are easier to attack because the automated components onboard are vulnerable to inside attacks. These issues can be mitigated well by trust-based intrusion detection. Therefore,this article presents an efficient trust-based intrusion detection framework for AVNs. First, we propose a novel trust evaluation model for ADVs, in which all the trust evaluation information of a given ADV is utilized to compute its trust value. Then, based on the trust evaluation model, a two-level intrusion detection framework is presented. In the framework, the trustworthiness of an accident or attack warning is established not only based on trust evaluation with the coverage of a roadside unit (RSU), but also the information exchanged between RSUs through the cloud server. Afterward, we propose a reinforcement-learning-based incentive mechanism to stimulate ADVs to report warnings. Through the case study, the proposed framework outperforms the conventional mechanism and can reach a higher warning detection ratio than the conventional methods.
引用
收藏
页码:54 / 60
页数:7
相关论文
共 50 条
  • [1] Intrusion Detection in Autonomous Vehicular Networks: A Trust Assessment and Q-learning Approach
    Xing, Rui
    Su, Zhou
    Wang, Yuntao
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM 2019 WKSHPS), 2019, : 79 - 83
  • [2] Deep Reinforcement Learning for Autonomous Driving: A Survey
    Kiran, B. Ravi
    Sobh, Ibrahim
    Talpaert, Victor
    Mannion, Patrick
    Al Sallab, Ahmad A.
    Yogamani, Senthil
    Perez, Patrick
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 4909 - 4926
  • [3] Deep Reinforcement Learning for Autonomous Driving Based on Safety Experience Replay
    Huang, Xiaohan
    Cheng, Yuhu
    Yu, Qiang
    Wang, Xuesong
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (06) : 2070 - 2084
  • [4] Pre-training with asynchronous supervised learning for reinforcement learning based autonomous driving
    Wang, Yunpeng
    Zheng, Kunxian
    Tian, Daxin
    Duan, Xuting
    Zhou, Jianshan
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2021, 22 (05) : 673 - 686
  • [5] A Selective Federated Reinforcement Learning Strategy for Autonomous Driving
    Fu, Yuchuan
    Li, Changle
    Yu, F. Richard
    Luan, Tom H.
    Zhang, Yao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1655 - 1668
  • [6] Effect of Number of Lanes on Traffic Characteristics of Reinforcement Learning Based Autonomous Driving
    Aboyeji, Esther
    Ajani, Oladayo S.
    Mallipeddi, Rammohan
    IEEE ACCESS, 2023, 11 : 80199 - 80206
  • [7] Reinforcement-Learning-Based Trajectory Learning in Frenet Frame for Autonomous Driving
    Yoon, Sangho
    Kwon, Youngjoon
    Ryu, Jaesung
    Kim, Sungkwan
    Choi, Sungwoo
    Lee, Kyungjae
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [8] An Empirical Study of DDPG and PPO-Based Reinforcement Learning Algorithms for Autonomous Driving
    Siboo, Sanjna
    Bhattacharyya, Anushka
    Naveen Raj, Rashmi
    Ashwin, S. H.
    IEEE ACCESS, 2023, 11 : 125094 - 125108
  • [9] A Reinforcement Learning Benchmark for Autonomous Driving in General Urban Scenarios
    Jiang, Yuxuan
    Zhan, Guojian
    Lan, Zhiqian
    Liu, Chang
    Cheng, Bo
    Li, Shengbo Eben
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 4335 - 4345
  • [10] Safe Reinforcement Learning in Autonomous Driving With Epistemic Uncertainty Estimation
    Zhang, Zheng
    Liu, Qi
    Li, Yanjie
    Lin, Ke
    Li, Linyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (10) : 13653 - 13666