Segmentation of MR Brain images with Bias Artifact

被引:0
作者
Ardizzone, Edoardo [1 ]
Pirrone, Roberto [1 ]
Gambino, Orazio [1 ]
Alagna, Francesco [1 ]
机构
[1] Univ Palermo, Dept Comp Sci, I-90133 Palermo, Italy
来源
2009 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE | 2009年
关键词
RF-Inhomogeneity; bias; halo; segmentation; MRI; C-MEANS ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain MR Images corrupted by RF-Inhomogeneity (bias artifact) exhibit brightness variations across the image. As a consequence, a standard Fuzzy C-Means (fern) segmentation algorithm may fail. In this work we show a new general-purpose bias removing algorithm, which can be used as a pre-processing step for a fern segmentation. We also compare our experimental results with the ones achieved by using (ED)-D-2-HUM filter, showing an improvement in brain segmentation and bias removal.
引用
收藏
页码:353 / 356
页数:4
相关论文
共 16 条
[11]   MRI simulation-based evaluation of image-processing and classification methods [J].
Kwan, RKS ;
Evans, AC ;
Pike, GB .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (11) :1085-1097
[12]  
Kwan RKS, 1996, LECT NOTES COMPUT SC, V1131, P135, DOI 10.1007/BFb0046947
[13]   SCALE-SPACE AND EDGE-DETECTION USING ANISOTROPIC DIFFUSION [J].
PERONA, P ;
MALIK, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) :629-639
[14]   An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities [J].
Pham, DL ;
Prince, JL .
PATTERN RECOGNITION LETTERS, 1999, 20 (01) :57-68
[15]   Adaptive fuzzy segmentation of magnetic resonance images [J].
Pham, DL ;
Prince, JL .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (09) :737-752
[16]   Fast robust automated brain extraction [J].
Smith, SM .
HUMAN BRAIN MAPPING, 2002, 17 (03) :143-155