Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum

被引:58
作者
Abubackar, Haris Nalakath [1 ]
Fernandez-Naveira, Anxela [1 ]
Veiga, Maria C. [1 ]
Kennes, Christian [1 ]
机构
[1] Univ A Coruna, Fac Sci, Chem Engn Lab, Rua Fraga 10, La Coruna 15008, Spain
关键词
Bioethanol; 2,3-Butanediol; Clostridium autoethanogenum; Mixotrophic fermentation; Syngas; Xylose; BIOLOGICAL CONVERSION; SYNTHESIS GAS; BIOMASS; SYNGAS; LJUNGDAHLII; BIOFUELS; FUELS;
D O I
10.1016/j.fuel.2016.03.048
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fermentation medium and fermentation pH are among the main parameters that control acidogenesis and solventogenesis in clostridia during CO bioconversion. The approach of cyclic pH shifts from high (pH 5.75) to low (pH 4.75) levels, in continuous gas-fed bioreactors, allowed Clostridium autoethanogenum to consume and convert CO and the produced acetic acid from CO to alcohols using one single bioreactor. Increasing amounts of ethanol accumulate after each pH shift cycle, while acids are used up and converted during each cycle. In this study, a total of three cyclic pH shifts along with partial medium replenishment, resulted in a high ethanol production, reaching a concentration of 7143 mg/L. The mixotrophic fermentation using xylose as additional carbon source besides carbon monoxide allowed to conclude that xylose is a preferred carbon source compared to CO and that it allows to increase the cell mass concentration (421 mg/L). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 34 条
[1]  
ABRINI J, 1994, ARCH MICROBIOL, V161, P345, DOI 10.1007/BF00303591
[2]   Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia [J].
Abubackar, Haris Nalakath ;
Bengelsdorf, Frank R. ;
Duerre, Peter ;
Veiga, Maria C. ;
Kennes, Christian .
APPLIED ENERGY, 2016, 169 :210-217
[3]   Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid [J].
Abubackar, Haris Nalakath ;
Veiga, Maria C. ;
Kennes, Christian .
BIORESOURCE TECHNOLOGY, 2015, 186 :122-127
[4]   Biological conversion of carbon monoxide to ethanol: Effect of pH, gas pressure, reducing agent and yeast extract [J].
Abubackar, Haris Nalakath ;
Veiga, Maria C. ;
Kennes, Christian .
BIORESOURCE TECHNOLOGY, 2012, 114 :518-522
[5]   Bacterial synthesis gas (syngas) fermentation [J].
Bengelsdorf, Frank R. ;
Straub, Melanie ;
Duerre, Peter .
ENVIRONMENTAL TECHNOLOGY, 2013, 34 (13-14) :1639-1651
[6]   Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia [J].
Brown, Steven D. ;
Nagaraju, Shilpa ;
Utturkar, Sagar ;
De Tissera, Sashini ;
Segovia, Simon ;
Mitchell, Wayne ;
Land, Miriam L. ;
Dassanayake, Asela ;
Koepke, Michael .
BIOTECHNOLOGY FOR BIOFUELS, 2014, 7
[7]   Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation [J].
Buckel, Wolfgang ;
Thauer, Rudolf K. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2013, 1827 (02) :94-113
[8]   Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas [J].
Cotter, Jacqueline L. ;
Chinn, Mari S. ;
Grunden, Amy M. .
ENZYME AND MICROBIAL TECHNOLOGY, 2009, 44 (05) :281-288
[9]   A review of conversion processes for bioethanol production with a focus on syngas fermentation [J].
Devarapalli, Mamatha ;
Atiyeh, Hasan K. .
BIOFUEL RESEARCH JOURNAL-BRJ, 2015, 2 (03) :268-280
[10]   Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production [J].
Fast, Alan G. ;
Schmidt, Ellinor D. ;
Jones, Shawn W. ;
Tracy, Bryan P. .
CURRENT OPINION IN BIOTECHNOLOGY, 2015, 33 :60-72