Geometrical image segmentation by the Allen-Cahn equation

被引:162
作者
Benes, M
Chalupecky, V
Mikula, K
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Prague 12000, Czech Republic
[2] Slovak Univ Technol Bratislava, Dept Math & Descript Geometry, Bratislava 81368, Slovakia
关键词
image segmentation; Allen-Cahn equation; finite-difference method; mean curvature flow;
D O I
10.1016/j.apnum.2004.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm of pattern recovery (image segmentation) based on the solution of the Allen-Cahn equation. The approach is usually understood as a regularization of the level-set motion by mean curvature where we impose a special forcing term which lets the initial level set closely surround the pattern in question. We show convergence of the numerical scheme and demonstrate function of the algorithm on several artificial as well as real examples. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 205
页数:19
相关论文
共 37 条
  • [1] IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION .2.
    ALVAREZ, L
    LIONS, PL
    MOREL, JM
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) : 845 - 866
  • [2] [Anonymous], 1996, LEVEL SET METHODS
  • [3] FRONT PROPAGATION AND PHASE FIELD-THEORY
    BARLES, G
    SONER, HM
    SOUGANIDIS, PE
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) : 439 - 469
  • [4] Benes M., 2001, ACTA MATH UNIV COMEN, V70, P123
  • [5] BENES M, 2003, APPL MATH, V485, P437
  • [6] Benes M., 2001, INTERFACE FREE BOUND, V3, P201, DOI DOI 10.4171/IFB/38
  • [7] Benes M., 1998, ACTA MATH U COMENIAN, V67, P17
  • [8] Brenner S. C., 2007, Texts Appl. Math., V15
  • [9] CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
  • [10] Geodesic active contours
    Caselles, V
    Kimmel, R
    Sapiro, G
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) : 61 - 79