Existence of 2-Nodal Solutions for Semilinear Elliptic Equations in Unbounded Domains

被引:0
作者
Li, Tiexiang [1 ]
Lin, Huei-li [2 ]
Wu, Tsung-fang [3 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 211189, Peoples R China
[2] Chang Gung Univ, Ctr Gen Educ, Tao Yuan, Taiwan
[3] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
关键词
Semilinear elliptic equations; 2-nodal solutions; unbounded domains; MINIMAL NODAL SOLUTIONS; POSITIVE SOLUTIONS; SYMMETRIC DOMAIN; NUMBER; TOPOLOGY; MULTIPLICITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the effect of domain shape on the existence of 2-nodal solutions for a semilinear elliptic equation involving non-odd nonlinearities.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 25 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   On the existence of a positive solution of semilinear elliptic equations in unbounded domains [J].
Bahri, A ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :365-413
[3]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[4]   Critical point theory on partially ordered Hilbert spaces [J].
Bartsch, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (01) :117-152
[5]   POSITIVE SOLUTIONS OF SOME NONLINEAR ELLIPTIC PROBLEMS IN EXTERIOR DOMAINS [J].
BENCI, V ;
CERAMI, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 99 (04) :283-300
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]   The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain [J].
Castro, A ;
Clapp, M .
NONLINEARITY, 2003, 16 (02) :579-590
[8]   A necessary and sufficient condition for Palais-Smale conditions [J].
Chen, KJ ;
Wang, HC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :154-165
[9]   Minimal nodal solutions of the pure critical exponent problem on a symmetric domain [J].
Clapp, M ;
Weth, T .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 21 (01) :1-14
[10]   Local mountain passes for semilinear elliptic problems in unbounded domains [J].
delPino, M ;
Felmer, PL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1996, 4 (02) :121-137