Quantum mechanics in phase space: first order comparison between the Wigner and the Fermi function

被引:3
|
作者
Benenti, G. [1 ,2 ,3 ]
Strini, G. [4 ]
机构
[1] Univ Insubria, CNR INFM, CNISM, I-22100 Como, Italy
[2] Univ Insubria, Ctr Nonlinear & Complex Syst, I-22100 Como, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[4] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
来源
EUROPEAN PHYSICAL JOURNAL D | 2010年 / 57卷 / 01期
关键词
STOCHASTICITY;
D O I
10.1140/epjd/e2010-00006-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Fermi g(F)(x,p) function provides a phase space description of quantum mechanics conceptually different from that based on the the Wigner function W(x,p). In this paper, we show that for a peaked wave packet the g(F)(x,p)=0 curve approximately corresponds to a phase space contour level of the Wigner function and provides a satisfactory description of the wave packet's size and shape. Our results show that the Fermi function is an interesting tool to investigate quantum fluctuations in the semiclassical regime.
引用
收藏
页码:117 / 121
页数:5
相关论文
共 50 条
  • [1] Quantum mechanics in phase space: first order comparison between the Wigner and the Fermi function
    G. Benenti
    G. Strini
    The European Physical Journal D, 2010, 57 : 117 - 121
  • [2] QUANTUM-MECHANICS IN PHASE SPACE .1. UNICITY OF WIGNER DISTRIBUTION FUNCTION
    KRUGER, JG
    POFFYN, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1976, 85 (01) : 84 - 100
  • [3] The interface of gravity and quantum mechanics illuminated by Wigner phase space
    Giese, E.
    Zeller, W.
    Kleinert, S.
    Meister, M.
    Tamma, V.
    Roura, A.
    Schleich, W. P.
    ATOM INTERFEROMETRY, 2014, 188 : 171 - 236
  • [4] Connection between Bohmian and quantum mechanics via the Wigner function
    Bonilla-Licea, Moise
    Schuch, Dieter
    PHYSICS LETTERS A, 2022, 423
  • [5] Quantum mechanics on phase space: The hydrogen atom and its Wigner functions
    Campos, P.
    Martins, M. G. R.
    Fernandes, M. C. B.
    Vianna, J. D. M.
    ANNALS OF PHYSICS, 2018, 390 : 60 - 70
  • [6] Wigner function for the quantum mechanics on a sphere
    Kowalski, K.
    Lawniczak, K.
    ANNALS OF PHYSICS, 2023, 457
  • [7] The Wigner function in the relativistic quantum mechanics
    Kowalski, K.
    Rembielinski, J.
    ANNALS OF PHYSICS, 2016, 375 : 1 - 15
  • [8] Wigner Flow Reveals Topological Order in Quantum Phase Space Dynamics
    Steuernagel, Ole
    Kakofengitis, Dimitris
    Ritter, Georg
    PHYSICAL REVIEW LETTERS, 2013, 110 (03)
  • [9] New quantum phase between the Fermi glass and the Wigner crystal in two dimensions
    Benenti, G
    Waintal, X
    Pichard, JL
    PHYSICAL REVIEW LETTERS, 1999, 83 (09) : 1826 - 1829
  • [10] WIGNER DISTRIBUTION FUNCTION AND PHASE-SPACE FORMULATION OF QUANTUM COSMOLOGY
    CALZETTA, E
    HU, BL
    PHYSICAL REVIEW D, 1989, 40 (02): : 380 - 389