The existence and non-existence of solutions for the nonlinear Schrodinger equation in one dimension

被引:3
作者
Sato, Yohei [1 ]
机构
[1] Saitama Univ, Dept Math, Sakura Ku, Shimo Okubo 255, Saitama 3388570, Japan
关键词
Variational method; Nonlinear Schrodinger equation; Shooting method; POSITIVE SOLUTION; STATES;
D O I
10.1016/j.nonrwa.2018.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following nonlinear Schrodinger equations in one dimension: -u '' + (1+b(x))u = f(u), u is an element of H-1 (R) where b(x) satisfies 1+ b(x) >= 0, lim vertical bar x vertical bar ->infinity b(x) = 0 and (lim) over bar vertical bar x vertical bar ->infinity e(beta 0 vertical bar x vertical bar)b(x) <= 0 for < 0 for beta(0) > 2 and f (u) satisfies some properties whose typical example is f(u) = vertical bar u vertical bar(p-1)u (p > 1). In this paper, we give conditions of b(x) where (*) has a positive solution and a condition on b(x) where (*) has no nontrivial solutions. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:477 / 494
页数:18
相关论文
共 15 条
[1]  
[Anonymous], 1990, REV MAT IBEROAM, DOI DOI 10.4171/RMI/92
[2]  
[Anonymous], 1977, GRUNDLEHREN MATH WIS
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]   AN ODE APPROACH TO THE EQUATION DELTA-U + KU(N+2/N-2)=0, IN R(N) [J].
BIANCHI, G ;
EGNELL, H .
MATHEMATISCHE ZEITSCHRIFT, 1992, 210 (01) :137-166
[5]   Infinitely many bound states for some nonlinear scalar field equations [J].
Cerami, G ;
Devillanova, G ;
Solimini, S .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (02) :139-168
[6]   Nonlinear Schrodinger equation with a point defect [J].
Fukuizumi, Reika ;
Ohta, Masahito ;
Ozawa, Tohru .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (05) :837-845
[7]   A positive solution for a nonlinear Schrodinger equation on RN [J].
Jeanjean, L ;
Tanaka, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (02) :443-464
[8]  
Jeanjean L, 2003, ADV NONLINEAR STUD, V3, P445
[9]   A positive solution for an asymptotically linear elliptic problem on RN autonomous at infinity [J].
Jeanjean, L ;
Tanaka, K .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 7 (24) :597-614
[10]   Ground states of nonlinear Schrodinger equations with potentials [J].
Li, Yongqing ;
Wang, Zhi-Qiang ;
Zeng, Jing .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (06) :829-837