Exploratory data analysis with interactive evolution

被引:0
|
作者
Malinchik, S [1 ]
Bonabeau, E [1 ]
机构
[1] Icosyst Corp, Cambridge, MA 01238 USA
来源
GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS | 2004年 / 3103卷
关键词
interactive evolutionary computation; data mining; exploratory data analysis;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We illustrate with two simple examples how Interactive Evolutionary Computation (IEC) can be applied to Exploratory Data Analysis (EDA). IEC is particularly valuable in an EDA context because the objective function is by definition either unknown a priori or difficult to formalize. The first example involves what is probably the simplest possible transformation of data: linear projections. While the concept of linear projections is simple to grasp, in practice finding the appropriate two-dimensional projection that reveals important features of high-dimensional data is no easy task. We show how IEC can be used to quickly find the most informative linear projection(s). In another, more complex example, IEC is used to evolve the "true" metric of attribute space. Indeed, the assumed distance function in attribute space strongly conditions the information content of a two-dimensional display of the data, regardless of the dimension reduction approach. The goal here is to evolve the attribute space distance function until "interesting" features of the data are revealed when a clustering algorithm is applied.
引用
收藏
页码:1151 / 1161
页数:11
相关论文
共 50 条
  • [31] Perspective Exploratory Methods for Multidimensional Data Analysis
    Valis, D.
    Zak, L.
    Vintr, Z.
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2019, : 426 - 430
  • [32] EXPLORATORY DATA ANALYSIS ON UNEMPLOYMENT RATES IN USA
    Luo, Jia
    Shang, Junfeng
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 48 (04) : 303 - 316
  • [33] Exploratory Data Analysis of Fault Injection Campaigns
    Cerveira, Frederico
    Kocsis, Imre
    Barbosa, Raul
    Madeira, Henrique
    Pataricza, Andras
    2018 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY (QRS 2018), 2018, : 191 - 202
  • [34] Principle of Learning Metrics for Exploratory Data Analysis
    Samuel Kaski
    Janne Sinkkonen
    Journal of VLSI signal processing systems for signal, image and video technology, 2004, 37 : 177 - 188
  • [35] Uncharted forest: A technique for exploratory data analysis
    Kneale, Casey
    Brown, Steven D.
    TALANTA, 2018, 189 : 71 - 78
  • [36] Exploratory data analysis as a foundation of inductive research
    Jebb, Andrew T.
    Parrigon, Scott
    Woo, Sang Eun
    HUMAN RESOURCE MANAGEMENT REVIEW, 2017, 27 (02) : 265 - 276
  • [37] Missing-data theory in the context of exploratory data analysis
    Camacho, Jose
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 103 (01) : 8 - 18
  • [38] PROJECTION PURSUIT EXPLORATORY DATA-ANALYSIS
    POSSE, C
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 20 (06) : 669 - 687
  • [39] Geographically weighted visualization: Interactive graphics for scale-varying exploratory analysis
    Dykes, Jason
    Brunsdon, Chris
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (06) : 1161 - 1168
  • [40] FastCat Catalogues: Interactive Entity-based Exploratory Analysis of Archival Documents
    Rinakakis, Georgios
    Petrakis, Kostas
    Tzitzikas, Yannis
    Fafalios, Pavlos
    2023 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, JCDL, 2023, : 190 - 194