Exploratory data analysis with interactive evolution

被引:0
|
作者
Malinchik, S [1 ]
Bonabeau, E [1 ]
机构
[1] Icosyst Corp, Cambridge, MA 01238 USA
来源
GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS | 2004年 / 3103卷
关键词
interactive evolutionary computation; data mining; exploratory data analysis;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We illustrate with two simple examples how Interactive Evolutionary Computation (IEC) can be applied to Exploratory Data Analysis (EDA). IEC is particularly valuable in an EDA context because the objective function is by definition either unknown a priori or difficult to formalize. The first example involves what is probably the simplest possible transformation of data: linear projections. While the concept of linear projections is simple to grasp, in practice finding the appropriate two-dimensional projection that reveals important features of high-dimensional data is no easy task. We show how IEC can be used to quickly find the most informative linear projection(s). In another, more complex example, IEC is used to evolve the "true" metric of attribute space. Indeed, the assumed distance function in attribute space strongly conditions the information content of a two-dimensional display of the data, regardless of the dimension reduction approach. The goal here is to evolve the attribute space distance function until "interesting" features of the data are revealed when a clustering algorithm is applied.
引用
收藏
页码:1151 / 1161
页数:11
相关论文
共 50 条
  • [21] Interactive knowledge discovery and data mining on genomic expression data with numeric formal concept analysis
    Gonzalez-Calabozo, Jose M.
    Valverde-Albacete, Francisco J.
    Pelaez-Moreno, Carmen
    BMC BIOINFORMATICS, 2016, 17
  • [22] Exploratory Data Analysis and Data Mining on Yelp Restaurant Review
    Alamoudi, Eman Saeed
    Al Azwari, Sana
    2021 IEEE NATIONAL COMPUTING COLLEGES CONFERENCE (NCCC 2021), 2021, : 1096 - +
  • [23] Interactive knowledge discovery and data mining on genomic expression data with numeric formal concept analysis
    Jose M González-Calabozo
    Francisco J Valverde-Albacete
    Carmen Peláez-Moreno
    BMC Bioinformatics, 17
  • [24] Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis
    Wang, April Yi
    Epperson, Will
    DeLine, Robert
    Drucker, Steven M.
    PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), 2022,
  • [25] Supporting Exploratory Data Analysis with Live Programming
    DeLine, Robert
    Fisher, Danyel
    PROCEEDINGS 2015 IEEE SYMPOSIUM ON VISUAL LANGUAGES AND HUMAN-CENTRIC COMPUTING (VL/HCC), 2015, : 111 - 119
  • [26] Exploratory data analysis for industrial safety application
    Vezzoli, M.
    Ponzoni, A.
    Pardo, M.
    Falasconi, M.
    Faglia, G.
    Sberveglieri, G.
    SENSORS AND ACTUATORS B-CHEMICAL, 2008, 131 (01) : 100 - 109
  • [27] Principle of learning metrics for exploratory data analysis
    Kaski, S
    Sinkkonen, J
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2004, 37 (2-3): : 177 - 188
  • [28] THE CONTRIBUTION OF EXPLORATORY STATISTICS TO THE ANALYSIS OF QUALITATIVE DATA
    Huber, Gunter L.
    Guertler, Leo
    Gento, Samuel
    PERSPECTIVA EDUCACIONAL, 2018, 57 (01): : 50 - 69
  • [29] Univariate exploratory data analysis of satellite telemetry
    Praveen, Mv Ramachandra
    Choudhury, Sushabhan
    Kuchhal, Piyush
    Singh, Rajesh
    Pandey, Purnendu Shekhar
    Galletta, Antonino
    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2024, 42 (01) : 57 - 85
  • [30] CHEMOSTAT: EXPLORATORY MULTIVARIATE DATA ANALYSIS SOFTWARE
    Helfer, Gilson A.
    Bock, Fernanda
    Marder, Luciano
    Furtado, Joao C.
    da Costa, Adilson B.
    Ferrao, Marco F.
    QUIMICA NOVA, 2015, 38 (04): : 575 - 579