Mountain pass and linking type sign-changing solutions for nonlinear problems involving the fractional Laplacian

被引:2
作者
Luo, Huxiao [1 ]
Tang, Xianhua [1 ]
Li, Shengjun [1 ,2 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Hainan Univ, Coll Informat Sci & Technol, Haikou 570228, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2017年
基金
中国国家自然科学基金;
关键词
fractional Laplacian; sign-changing solutions; mountain pass and linking type; invariant sets of descending flow; REGULARITY; EQUATIONS; BOUNDARY;
D O I
10.1186/s13661-017-0838-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of sign-changing solutions for nonlinear problems involving the fractional Laplacian {(-Delta)(s)u-lambda u=f(c, u), x is an element of Omega, u=0, x is an element of R-n \ Omega where Omega subset of R-boolean AND(n >= 2) is a bounded smooth domain, s is an element of(0, 1), (-Delta)(s) denotes the fractional Laplacian, lambda is a real parameter, the nonlinear term f satisfies superlinear and subcritical growth conditions at zero and at infinity. When lambda <= 0, we prove the existence of a positive solution, a negative solution and a sign-changing solution by combing minimax method with invariant sets of descending flow. When lambda >= lambda(s)(1)(where lambda(s)(1) denotes the first eigenvalue of the operator (-Delta)(s) in Omega with homogeneous Dirichlet boundary data), we prove the existence of a sign-changing solution by using a variation of linking type theorems.
引用
收藏
页数:23
相关论文
共 22 条
  • [1] On some critical problems for the fractional Laplacian operator
    Barrios, B.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) : 6133 - 6162
  • [2] Nonlinear Schrodinger equations with steep potential well
    Bartsch, T
    Pankov, A
    Wang, ZQ
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) : 549 - 569
  • [3] A concave-convex elliptic problem involving the fractional Laplacian
    Braendle, C.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) : 39 - 71
  • [4] Layer solutions in a half-space for boundary reactions
    Cabré, X
    Solà-Morales, J
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) : 1678 - 1732
  • [5] Positive solutions of nonlinear problems involving the square root of the Laplacian
    Cabre, Xavier
    Tan, Jinggang
    [J]. ADVANCES IN MATHEMATICS, 2010, 224 (05) : 2052 - 2093
  • [6] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
    Caffarelli, Luis A.
    Salsa, Sandro
    Silvestre, Luis
    [J]. INVENTIONES MATHEMATICAE, 2008, 171 (02) : 425 - 461
  • [7] Variational problems with free boundaries for the fractional Laplacian
    Caffarelli, Luis A.
    Roquejoffre, Jean-Michel
    Sire, Yannick
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) : 1151 - 1179
  • [8] Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations
    Capella, Antonio
    Davila, Juan
    Dupaigne, Louis
    Sire, Yannick
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) : 1353 - 1384
  • [9] Fractional Laplacian in conformal geometry
    Chang, Sun-Yung Alice
    del Mar Gonzalez, Maria
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1410 - 1432
  • [10] Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian
    Chang, Xiaojun
    Wang, Zhi-Qiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) : 2965 - 2992