Duality theorems for joint source-channel coding

被引:6
|
作者
Mittal, U [1 ]
Phamdo, N [1 ]
机构
[1] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
关键词
AWGN channel; blowing-up lemma; duality; joint source-channel coding; memoryless Gaussian source;
D O I
10.1109/18.850667
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider joint source-channel coding for a memoryless Gaussian source and an additive white Gaussian noise (AWGN) channel. For a given code defined by an encoder-decoder pair (alpha, beta), its dual code is obtained by interchanging the encoder and decoder: (beta, alpha). It is shown that if a code (alpha, beta) is optimal at rate rho channel uses per source sample and if it satisfies a certain uniform continuity condition, then its dual code (beta, alpha) is optimal for rate 1/rho channel uses per source sample, Further, it is demonstrated that there is a code which is optimal but its dual code is not optimal, Finally, using random coding, we show that there is an optimal code which has an optimal dual, The duality concept is also presented for the cases of i) binary memoryless equiprobable source and binary-symmetric channel (BSC), and ii) colored Gaussian source and additive colored Gaussian noise (ACGN) channel.
引用
收藏
页码:1263 / 1275
页数:13
相关论文
共 50 条
  • [21] Joint source-channel subband coding of images
    Srinivasan, M
    Chellappa, R
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 2925 - 2928
  • [22] Joint source-channel LZ'77 coding
    Lonardi, S
    Szpankowski, W
    DCC 2003: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2003, : 273 - 282
  • [23] Results on Combinatorial Joint Source-Channel Coding
    Kochman, Yuval
    Mazumdar, Arya
    Polyanskiy, Yury
    2012 IEEE INFORMATION THEORY WORKSHOP (ITW), 2012, : 10 - 14
  • [24] Distributed joint source-channel coding of video
    Xu, Q
    Stankovic, K
    Liveris, A
    Xiong, Z
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 2537 - 2540
  • [25] Parallel concatenated joint source-channel coding
    Kliewer, J
    Thobaben, R
    ELECTRONICS LETTERS, 2003, 39 (23) : 1664 - 1666
  • [26] Sparse approximations for joint source-channel coding
    Rath, Gagan
    Guillemot, Christine
    Fuchs, Jean-Jacques
    2008 IEEE 10TH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, VOLS 1 AND 2, 2008, : 485 - 489
  • [27] A Strong Converse for Joint Source-Channel Coding
    Wang, Da
    Ingber, Amir
    Kochman, Yuval
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [28] Joint source-channel coding for scalable video
    Kondi, LP
    Ishtiaq, F
    Katsaggelos, KA
    IMAGE AND VIDEO COMMUNICATIONS AND PROCESSING 2000, 2000, 3974 : 324 - 335
  • [29] Minimax Theorems for Finite Blocklength Lossy Joint Source-Channel Coding over an Arbitrarily Varying Channel
    A. S. Vora
    A. A. Kulkarni
    Problems of Information Transmission, 2021, 57 : 99 - 128
  • [30] Minimax Theorems for Finite Blocklength Lossy Joint Source-Channel Coding over an Arbitrarily Varying Channel
    Vora, A. S.
    Kulkarni, A. A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2021, 57 (02) : 99 - 128