LSTM-based Deep Learning Models for Answer Ranking

被引:5
|
作者
Li, Zhenzhen [1 ]
Huang, Jiuming [1 ]
Zhou, Zhongcheng [1 ]
Zhang, Haoyu [1 ]
Chang, Shoufeng [2 ]
Huang, Zhijie [3 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China
[2] Beijing Satellite Nav Ctr, Beijing, Peoples R China
[3] Beijing Gaodi Informat Technol Co Ltd, Beijing, Peoples R China
来源
2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016) | 2016年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
long short-term memory; learning to rank; Question Answering; hypernyms;
D O I
10.1109/DSC.2016.37
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The learning problem of ranking arises in many tasks, including the question answering, information retrieval, and movie recommendation. In these tasks, the ordering of the answers, documents or movies returned is a critical aspect of the system. Recently, deep learning approaches have gained a lot of attention from the research community and industry for their ability to automatically learn optimal feature representation for a given task. We aim to solve the answer ranking problem in practical question answering system with deep learning approaches. In this paper, we define a composite representation for questions and answers by combining convolutional neural network (CNN) with bidirectional long short-term memory (biLSTM) models, and learn a similarity function to relate them in a supervised way from the available training data. Considering the limited training data, we propose a hypernym strategy to get more general text pairs and test the effectiveness of different strategies. Experimental results on a public benchmark dataset from TREC demonstrate that our system outperforms previous work which requires syntactic features and some deep learning models.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 50 条
  • [1] OneHotEncoding and LSTM-based deep learning models for protein secondary structure prediction
    Enireddy, Vamsidhar
    Karthikeyan, C.
    Babu, D. Vijendra
    SOFT COMPUTING, 2022, 26 (08) : 3825 - 3836
  • [2] OneHotEncoding and LSTM-based deep learning models for protein secondary structure prediction
    Vamsidhar Enireddy
    C. Karthikeyan
    D. Vijendra Babu
    Soft Computing, 2022, 26 : 3825 - 3836
  • [3] LSTM-based deep learning for spatial–temporal software testing
    Lei Xiao
    Huaikou Miao
    Tingting Shi
    Yu Hong
    Distributed and Parallel Databases, 2020, 38 : 687 - 712
  • [4] LSTM-based deep learning for spatial-temporal software testing
    Xiao, Lei
    Miao, Huaikou
    Shi, Tingting
    Hong, Yu
    DISTRIBUTED AND PARALLEL DATABASES, 2020, 38 (03) : 687 - 712
  • [5] A deep learning LSTM-based approach for AMD classification using OCT images
    Hamid, Laila
    Elnokrashy, Amgad
    Abdelhay, Ehab H.
    Abdelsalam, Mohamed M.
    Neural Computing and Applications, 2024, 36 (31) : 19531 - 19547
  • [6] Digital beamforming enhancement with LSTM-based deep learning for millimeter wave transmission
    Naji, Ali A.
    Jamel, Thamer M.
    Khazaal, Hassan F.
    OPEN ENGINEERING, 2024, 14 (01):
  • [7] An LSTM-Based Deep Learning Approach for Classifying Malicious Traffic at the Packet Level
    Hwang, Ren-Hung
    Peng, Min-Chun
    Van-Linh Nguyen
    Chang, Yu-Lun
    APPLIED SCIENCES-BASEL, 2019, 9 (16):
  • [8] Predicting customer demand with deep learning: an LSTM-based approach incorporating customer information
    Pakdel, Golnaz Hooshmand
    He, Yong
    Chen, Xuhui
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2025,
  • [9] Predicting the lateral displacement of tall buildings using an LSTM-based deep learning approach
    Kim, Bubryur
    Preethaa, K. R. Sri
    Chen, Zengshun
    Natarajan, Yuvaraj
    Wadhwa, Gitanjali
    Lee, Hong Min
    WIND AND STRUCTURES, 2023, 36 (06) : 379 - 392
  • [10] Air quality prediction using CNN plus LSTM-based hybrid deep learning architecture
    Gilik, Aysenur
    Ogrenci, Arif Selcuk
    Ozmen, Atilla
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (08) : 11920 - 11938