Hydrogen storage: the remaining scientific and technological challenges

被引:418
作者
Felderhoff, Michael
Weidenthaler, Claudia
von Helmolt, Rittmar
Eberle, Ulrich
机构
[1] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
[2] Hydrogen & Fuel Cell Res Strategy Europe, GM Fuel Cell Act, D-65423 Russelsheim, Germany
关键词
D O I
10.1039/b701563c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To ensure future worldwide mobility, hydrogen storage in combination with fuel cells for onboard automotive applications is one of the most challenging issues. Potential solid-state solutions have to fulfil operating requirements defined by the fuel cell propulsion system. Important requirements are also defined by customer demands such as cost, overall fuel capacity, refuelling time and efficiency. It seems that currently none of the different storage solid state materials can reach the required storage densities for a hydrogen-powered vehicle. New strategies for storage systems are necessary to fulfil the requirements for a broad introduction of automotive fuel cell powertrains to the market. The combination of different storage systems may provide a possible solution to store sufficiently high amounts of hydrogen.
引用
收藏
页码:2643 / 2653
页数:11
相关论文
共 67 条
  • [1] A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst
    Amendola, SC
    Sharp-Goldman, SL
    Janjua, MS
    Spencer, NC
    Kelly, MT
    Petillo, PJ
    Binder, M
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (10) : 969 - 975
  • [2] Hydrogen adsorption on a single-walled carbon nanotube material:: a comparative study of three different adsorption techniques
    Ansón, A
    Benham, M
    Jagiello, J
    Callejas, MA
    Benito, AM
    Maser, WK
    Züttel, A
    Sudan, P
    Martínez, MT
    [J]. NANOTECHNOLOGY, 2004, 15 (11) : 1503 - 1508
  • [3] Hydrogen storage in carbon nanotubes
    Becher, M
    Haluska, M
    Hirscher, M
    Quintel, A
    Skakalova, V
    Dettlaff-Weglikovska, U
    Chen, X
    Hulman, M
    Choi, Y
    Roth, S
    Meregalli, V
    Parrinello, M
    Ströbel, R
    Jörissen, L
    Kappes, MM
    Fink, J
    Züttel, A
    Stepanek, I
    Bernierg, P
    [J]. COMPTES RENDUS PHYSIQUE, 2003, 4 (09) : 1055 - 1062
  • [4] One-step direct synthesis of a Ti-doped sodium alanate hydrogen storage material
    Bellosta von Colbe, JM
    Felderhoff, M
    Bogdanovic, B
    Schüth, F
    Weidenthaler, C
    [J]. CHEMICAL COMMUNICATIONS, 2005, (37) : 4732 - 4734
  • [5] Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials
    Bogdanovic, B
    Schwickardi, M
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 253 (1-2) : 1 - 9
  • [6] Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials
    Bogdanovic, B
    Brand, RA
    Marjanovic, A
    Schwickardi, M
    Tölle, J
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 302 (1-2) : 36 - 58
  • [7] Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4
    Bogdanovic, Borislav
    Felderhoff, Michael
    Pommerin, Andre
    Schueth, Ferdi
    Spielkamp, Nick
    [J]. ADVANCED MATERIALS, 2006, 18 (09) : 1198 - +
  • [8] Adsorption of gases in multimolecular layers
    Brunauer, S
    Emmett, PH
    Teller, E
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 : 309 - 319
  • [9] A route to high surface area, porosity and inclusion of large molecules in crystals
    Chae, HK
    Siberio-Pérez, DY
    Kim, J
    Go, Y
    Eddaoudi, M
    Matzger, AJ
    O'Keeffe, M
    Yaghi, OM
    [J]. NATURE, 2004, 427 (6974) : 523 - 527
  • [10] Hydrogen storage in graphite nanofibers
    Chambers, A
    Park, C
    Baker, RTK
    Rodriguez, NM
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (22): : 4253 - 4256