A Review of Evolutionary Multimodal Multiobjective Optimization

被引:166
作者
Tanabe, Ryoji [1 ]
Ishibuchi, Hisao [1 ]
机构
[1] Southern Univ Sci & Technol, Univ Key Lab Evolving Intelligent Syst Guangdong, Dept Comp Sci & Engn, Shenzhen Key Lab Computat Intelligence, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Evolutionary algorithms; multimodal multiobjective optimization; performance indicators; test problems; SELF-ADAPTATION; OMNI-OPTIMIZER; DECISION SPACE; NSGA-II; ALGORITHM; PERFORMANCE; DIVERSITY; EMOA; SELECTION; DISTANCE;
D O I
10.1109/TEVC.2019.2909744
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal multiobjective optimization aims to find all Pareto optimal solutions, including overlapping solutions in the objective space. Multimodal multiobjective optimization has been investigated in the evolutionary computation community since 2005. However, it is difficult to survey existing studies in this field because they have been independently conducted and do not explicitly use the term "multimodal multiobjective optimization." To address this issue, this letter reviews the existing studies of evolutionary multimodal multiobjective optimization, including studies published under names that are different from multimodal multiobjective optimization. Our review also clarifies open issues in this research area.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 67 条
[41]  
Miettinen K, 1998, NONLINEAR MULTIOBJEC
[42]  
Mwaura J, 2016, IEEE C EVOL COMPUTAT, P4775, DOI 10.1109/CEC.2016.7744401
[43]  
Preuss M, 2006, LECT NOTES COMPUT SC, V4193, P513
[44]   Novel benchmark functions for continuous multimodal optimization with comparative results [J].
Qu, B. Y. ;
Liang, J. J. ;
Wang, Z. Y. ;
Chen, Q. ;
Suganthan, P. N. .
SWARM AND EVOLUTIONARY COMPUTATION, 2016, 26 :23-34
[45]  
Robic T, 2005, LECT NOTES COMPUT SC, V3410, P520
[46]   A framework for generating tunable test functions for multimodal optimization [J].
Ronkkonen, Jani ;
Li, Xiaodong ;
Kyrki, Ville ;
Lampinen, Jouni .
SOFT COMPUTING, 2011, 15 (09) :1689-1706
[47]  
Rudolph G, 2009, MCDM: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN MULTI-CRITERIA DECISION-MAKING, P74
[48]  
Rudolph G, 2007, LECT NOTES COMPUT SC, V4403, P36
[49]   Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization [J].
Schuetze, Oliver ;
Esquivel, Xavier ;
Lara, Adriana ;
Coello Coello, Carlos A. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2012, 16 (04) :504-522
[50]   Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design [J].
Schuetze, Oliver ;
Vasile, Massimiliano ;
Coello Coello, Carlos A. .
JOURNAL OF AEROSPACE COMPUTING INFORMATION AND COMMUNICATION, 2011, 8 (03) :53-70