Dissipation trends in a shallow water model

被引:0
作者
Nicolis, C [1 ]
机构
[1] Inst Royal Meteorol Belgique, B-1180 Brussels, Belgium
关键词
Approximation theory - Atmospheric movements - Chaos theory - Hydrology - Mathematical models - Parameter estimation - Partial differential equations;
D O I
10.1175/1520-0469(2000)057<3559:DTIASW>2.0.CO;2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The formalism of irreversible thermodynamics is applied to the shallow water model. Entropy production and entropy flow terms are identified, describing the ways dissipation and exchange processes unfold in space and rime. Explicit evaluations are carried out in the case of Lorenz's nine-mode truncation and in the quasigeostrophic limit of the model. A number of systematic trends are identified by studying the way dissipation and kinetic energy vary as the forcing is increased and the system undergoes qualitative changes of behavior between different regimes, from simple symmetric flow to intermittent chaos. The constraints imposed by thermodynamics on the structure of the model equations and, especially, on the parameterization schemes are brought out.
引用
收藏
页码:3559 / 3570
页数:12
相关论文
共 19 条
[1]  
CHARNEY JG, 1979, J ATMOS SCI, V36, P1205, DOI 10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO
[2]  
2
[3]   GLOBAL THERMODYNAMICS OF ATMOSPHERIC MOTION [J].
DUTTON, JA .
TELLUS, 1973, 25 (02) :89-110
[4]  
GENT PR, 1982, J ATMOS SCI, V39, P3, DOI 10.1175/1520-0469(1982)039<0003:IMSTTL>2.0.CO
[5]  
2
[6]  
LORENZ EN, 1980, J ATMOS SCI, V37, P1685, DOI 10.1175/1520-0469(1980)037<1685:ASAQGE>2.0.CO
[7]  
2
[8]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[9]  
2
[10]  
MOBBS SD, 1982, Q J ROY METEOR SOC, V108, P535, DOI 10.1002/qj.49710845704