Boundedness of Generalized Parametric Marcinkiewicz Integrals Associated to Surfaces

被引:11
|
作者
Ali, Mohammed [1 ]
Al-Refai, Oqlah [2 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid 22110, Jordan
[2] Taibah Univ, Fac Sci, Dept Math, Almadinah Almunawwarah 41477, Saudi Arabia
关键词
L-p boundedness; rough kernels; Marcinkiewicz integrals; Triebel-Lizorkin spaces; extrapolation; SINGULAR-INTEGRALS; OPERATORS;
D O I
10.3390/math7100886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the boundedness of the generalized parametric Marcinkiewicz integral operators M-Omega,phi,h,rho((r)) is considered. Under the condition that Omega is a function in L-q(Sn-1) with q is an element of(1,2], appropriate estimates of the aforementioned operators from Triebel-Lizorkin spaces to L-p spaces are obtained. By these estimates and an extrapolation argument, we establish the boundedness of such operators when the kernel function Omega belongs to the block space B-q(0,nu-1)(Sn-1) or in the space L(logL)(nu)(Sn-1). Our results represent improvements and extensions of some known results in generalized parametric Marcinkiewicz integrals.
引用
收藏
页数:13
相关论文
共 50 条