Impacts of climate change on the streamflow of a large river basin in the Australian tropics using optimally selected climate model outputs

被引:12
|
作者
Usman, Muhammad [1 ]
Ndehedehe, Christopher E. [2 ,3 ]
Farah, Humera [4 ]
Manzanas, Rodrigo [5 ]
机构
[1] Pakistan Meteorol Dept, Div Res & Dev, Pitras Bukhari Rd,H-8-2, Islamabad, Pakistan
[2] Griffith Univ, Australian Rivers Inst, Nathan, Qld 4111, Australia
[3] Griffith Univ, Griffith Sch Environm & Sci, Nathan, Qld 4111, Australia
[4] Bahria Univ, Dept Earth & Environm Sci, Shangrilla Rd,Sect E-8, Islamabad, Pakistan
[5] Univ Cantabria, Dept Matem at Aplicada & Ciencias Comp, Meteorol Grp, Santander 39005, Spain
关键词
Droughts; Hydrological impacts; Water scarcity; Water management; Central Australia; TERN dataset version 1.0.2; WATER-RESOURCES; HYDROLOGICAL CHANGES; AIR-TEMPERATURE; GLOBAL CLIMATE; PRECIPITATION; PERFORMANCE; CATCHMENT; SIMULATIONS; UNCERTAINTY; MAXIMUM;
D O I
10.1016/j.jelepro.2021.128091
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change affects natural systems, leading to increased acceleration of global water cycle and substantial impacts on the productivity of tropical rivers and the several ecosystem functions they provide. However, the anticipated impacts of climate change in terms of frequency and intensity of extreme events (e.g., droughts and floods) on hydrological systems across regions could be substantially different. This study therefore aims to assess the impacts of climate change on the streamflow of a large river basin located in central Australia (Cooper CreekBulloo River Basin). Modified version of the hydrological model Hydrologiska ByrAns Vattenbalansavdelning (HBV) was used in this study to generate daily streamflow. This model was first calibrated (2001-2010) and then validated for two independent periods (1993-1997 and 2011-2015). The model depicted a good performance in simulating observed streamflow. Climate projection data from multiple general circulation models (ACCESSIO, CanESM2, CESM1-CAM5, CNRM-CM5, GFDL-ESM2M, HadGEM2-CC, MIR005, NorESM1-M, ACCESS1-0, ACCESS1-3, CCSM4, CNRM-CM5, CSIRO-Mk3.6, GFDL-CM3, GFDL-ESM2M, HadGEM2, MIR005, MPI-ESM-LR, and NorESM1-M) in various forms (raw, statistically downscaled, dynamically downscaled, and bias adjusted) were considered in this study. Results showed that three high resolution dynamically downscaled and bias adjusted models (ACCESS1-3, CNRM-CM5, and MPI-ESM-LR) from Terrestrial Ecosystem Research Network (TERN) dataset (v1.0.2) have better performance than other models considered, that is, in terms of capturing observed precipitation over the basin. Future climate projections of ensemble of these three models forced with RCP 4.5 and RCP 8.5 emission scenarios were then used to generate streamflow for 2050s (2040-2069) and 2080s (2070-2099). Results of the study indicated that mean annual precipitation was projected to decrease by up to -8% in 2050s and temperature was projected to increase by up to 4.66 degrees C in 2080s under the average and extreme emission scenarios, respectively. Mean annual, mean seasonal (December-February, March-May, June-August, September-November), and mean monthly streamflow were projected to decrease under different emission scenarios in 2050s and 2080s. These results indicate decreased water availability in the future as well as water cycle intensification. These changes in streamflow might have impacts on agriculture, natural ecosystem, and could lead to water restrictions. The outcome of this study can directly feed into frameworks for sustainable management of water resources and support adaptation strategies that rely on science and policy to improve water resources allocation in the region.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Assessment of potential impact of climate change on streamflow: a case study of the Brahmani River basin, India
    Vandana, Kumari
    Islam, Adlul
    Sarthi, P. Parth
    Sikka, Alok K.
    Kapil, Hemlata
    JOURNAL OF WATER AND CLIMATE CHANGE, 2019, 10 (03) : 624 - 641
  • [42] An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins
    Eisner, S.
    Floerke, M.
    Chamorro, A.
    Daggupati, P.
    Donnelly, C.
    Huang, J.
    Hundecha, Y.
    Koch, H.
    Kalugin, A.
    Krylenko, I.
    Mishra, V.
    Piniewski, M.
    Samaniego, L.
    Seidou, O.
    Wallner, M.
    Krysanova, V.
    CLIMATIC CHANGE, 2017, 141 (03) : 401 - 417
  • [43] Climate Change Impacts on the Hydrology of the Brahmaputra River Basin
    Palash, Wahid
    Bajracharya, Sagar Ratna
    Shrestha, Arun Bhakta
    Wahid, Shahriar
    Hossain, Md. Shahadat
    Mogumder, Tarun Kanti
    Mazumder, Liton Chandra
    CLIMATE, 2023, 11 (01)
  • [44] Assessing Impacts of Climate Change and Human Activities on Streamflow and Sediment Discharge in the Ganjiang River Basin (1964-2013)
    Guo, Li-Ping
    Mu, Xing-Min
    Hu, Jian-Min
    Gao, Peng
    Zhang, Yong-Fen
    Liao, Kai-Tao
    Bai, Hua
    Chen, Xiu-Long
    Song, Yue-Jun
    Jin, Ning
    Yu, Qiang
    WATER, 2019, 11 (08)
  • [45] Climate change impact assessment of a river basin using CMIP5 climate models and the VIC hydrological model
    Hengade, Narendra
    Eldho, T. I.
    Ghosh, Subimal
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2018, 63 (04): : 596 - 614
  • [46] A framework for projecting future streamflow of the Yalong River basin to climate change
    Cao, Chen
    Yan, Baowei
    Guo, Jing
    Jiang, Huining
    Li, Zhengkun
    Liu, Yu
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (08) : 1549 - 1562
  • [47] Response of streamflow to climate change in the headwater catchment of the Yellow River basin
    Xu, Z. X.
    Zhao, F. F.
    Li, J. Y.
    QUATERNARY INTERNATIONAL, 2009, 208 : 62 - 75
  • [48] Potential Impacts of Projected Climate Change under CMIP5 RCP Scenarios on Streamflow in the Wabash River Basin
    Wang, Jingrui
    Hu, Litang
    Li, Didi
    Ren, Meifang
    ADVANCES IN METEOROLOGY, 2020, 2020
  • [49] Identification of impacts of climate change and direct human activities on streamflow in Weihe River Basin in Northwest China
    Fan Jingjing
    Huang Qiang
    Liu Dengfeng
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2017, 10 (04) : 119 - 129
  • [50] Land Use and Climate Change Impacts on Streamflow Using SWAT Model, Middle Awash Sub Basin, Ethiopia
    Tenagashaw, Diress Yigezu
    Muluneh, Mekuanent
    Metaferia, Girum
    Mekonnen, Yitbarek Andualem
    WATER CONSERVATION SCIENCE AND ENGINEERING, 2022, 7 (03) : 183 - 196