Numerical analysis of a thermoelastic dielectric problem arising in the Moore-Gibson-Thompson theory

被引:2
作者
Bazarra, N. [1 ]
Fernandez, J. R. [1 ]
Quintanilla, R. [2 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada 1, Vigo 36310, Spain
[2] ESEIAAT UPC, Dept Matemat, Colom 11, Terrassa 08222, Barcelona, Spain
关键词
Moore-Gibson-Thompson thermoelasticity; Dielectric material; Finite elements; A priori error estimates; Numerical simulations;
D O I
10.1016/j.cam.2022.114454
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we numerically study a thermoelastic problem arising in the Moore- Gibson-Thompson theory. Dielectrics effects are also included within the model. The corresponding problem is written in terms of the displacement field, the temperature and the electric potential. A viscous term is added in the heat equation to provide the numerical analysis of the corresponding variational problem. Then, by using the finite element method and the implicit Euler scheme fully discrete approximations are introduced. A discrete stability property and a priori error estimates are obtained. Finally, one- and two-dimensional numerical simulations are shown to demonstrate the accuracy of the approximation and the behavior of the solution. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:15
相关论文
共 22 条
[1]   Thermoelastic Processes by a Continuous Heat Source Line in an Infinite Solid via Moore-Gibson-Thompson Thermoelasticity [J].
Abouelregal, Ahmed E. ;
Ahmed, Ibrahim-Elkhalil ;
Nasr, Mohamed E. ;
Khalil, Khalil M. ;
Zakria, Adam ;
Mohammed, Fawzy A. .
MATERIALS, 2020, 13 (19) :1-17
[2]   The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore-Gibson-Thompson heat conduction model [J].
Aboueregal, Ahmed E. ;
Sedighi, Hamid M. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2021, 235 (05) :1004-1020
[3]   Analysis of a Moore-Gibson-Thompson thermoelastic problem [J].
Bazarra, N. ;
Fernandez, J. R. ;
Quintanilla, R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382
[4]  
Bazarra N., 2021, ASYMPTOTIC ANAL
[5]   A poro-thermoelastic problem with dissipative heat conduction [J].
Bazarra, Noelia ;
Fernandez, Jose R. ;
Magana, Antonio ;
Quintanilla, Ramon .
JOURNAL OF THERMAL STRESSES, 2020, 43 (11) :1415-1436
[6]  
Borghesani R., 1977, ANN MAT PARE APPL, V114, P271
[7]   Numerical analysis and simulations of a dynamic frictionless contact problem with damage [J].
Campo, M. ;
Fernandez, J. R. ;
Kuttler, K. L. ;
Shillor, M. ;
Viano, J. M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) :476-488
[8]  
Ciarlet PG., 1993, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0
[9]   A THEORY OF THERMOVISCOELASTIC DIELECTRICS [J].
CIARLETTA, M ;
IESAN, D .
JOURNAL OF THERMAL STRESSES, 1991, 14 (04) :589-606
[10]   A NEW APPROACH TO MGT-THERMOVISCOELASTICITY [J].
Conti, Monica ;
Pata, Vittorino ;
Pellicer, Marta ;
Quintanilla, Ramon .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (10) :4645-4666