Stability estimate for an inverse problem for the electro-magnetic wave equation and spectral boundary value problem

被引:3
作者
Ben Joud, Hajer [1 ]
机构
[1] Fac Sci Bizerte, Dept Math, Jarzouna Bizerte 7021, Tunisia
关键词
GLOBAL UNIQUENESS; COEFFICIENTS;
D O I
10.1088/0266-5611/26/8/085016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the stability estimate of the inverse problem for the determination of the electric potential using the Neumann spectral data {lambda(k), partial derivative(nu)phi(k), k >= 1}. The uniqueness result is given in Katchalov and Kurylev (1998 Commun. Partial Differ. Equ. 23 55-95), where the authors show that the canonical Schrodinger operator is uniquely determined via its incomplete boundary spectral data. To obtain this result, we establish the stability estimate of the inverse problem of determining the electric potential entering the electro-magnetic wave equation in a bounded smooth domain in R-d from boundary observations. This information is enclosed in the hyperbolic (dynamic) Dirichlet-to-Neumann map associated with the solutions to the electro-magnetic wave equation. We prove in dimension d >= 2 that the knowledge of the Dirichlet-to-Neumann map for the electro-magnetic wave equation measured on the boundary uniquely determines the electric potential.
引用
收藏
页数:26
相关论文
共 34 条
[1]   STABILITY FOR A MULTIDIMENSIONAL INVERSE SPECTRAL THEOREM [J].
ALESSANDRINI, G ;
SYLVESTER, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (05) :711-736
[2]  
[Anonymous], 1968, DISCRETE CONTINUOUS
[3]   Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map [J].
Bellassoued, M. ;
Jellali, D. ;
Yamamoto, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) :1036-1046
[4]  
Bellassoued M., 2006, Appl. Anal., V85, P1219, DOI [10.1080/00036810600787873, DOI 10.1080/00036810600787873]
[5]  
Bellassoued M., 2004, APPL ANAL, V83, P983
[6]   Stability estimate for an inverse problem for the wave equation in a magnetic field [J].
Bellassoued, Mourad ;
Benjoud, Hajer .
APPLICABLE ANALYSIS, 2008, 87 (03) :277-292
[7]   Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem [J].
Bellassoued, Mourad ;
Choulli, Mourad ;
Yamamoto, Masahiro .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (02) :465-494
[8]   A stability estimate for an inverse problem for the Schrodinger equation in a magnetic field from partial boundary measurements [J].
Ben Joud, Hajer .
INVERSE PROBLEMS, 2009, 25 (04)
[9]  
BEREZANSKII YM, 1955, DOKL AKAD NAUK SSSR+, V105, P197
[10]  
BEREZANSKII YM, 1953, DOKL AKAD NAUK SSSR, V93, P197