Asymptotics of the weighted least squares estimation for AR(1) processes with applications to confidence intervals

被引:0
|
作者
Han, Ruidong [1 ]
Wang, Xinghui [1 ]
Hu, Shuhe [2 ]
机构
[1] Anhui Univ, Sch Econ, 111 Jiulong Rd, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Weighted least squares estimation; Empirical likelihood; Interval estimation; Autoregressive models; PARTIAL LINEAR-MODELS; EMPIRICAL LIKELIHOOD; TIME-SERIES; INFERENCE; REGIONS;
D O I
10.1007/s10260-017-0406-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the first-order autoregressive model, we establish the asymptotic theory of the weighted least squares estimations whether the underlying autoregressive process is stationary, unit root, near integrated or even explosive under a weaker moment condition of innovations. The asymptotic limit of this estimator is always normal. It is shown that the empirical log-likelihood ratio at the true parameter converges to the standard chi-square distribution. An empirical likelihood confidence interval is proposed for interval estimations of the autoregressive coefficient. The results improve the corresponding ones of Chan et al. (Econ Theory 28:705-717, 2012). Some simulations are conducted to illustrate the proposed method.
引用
收藏
页码:479 / 490
页数:12
相关论文
共 27 条
  • [1] Asymptotics of the weighted least squares estimation for AR(1) processes with applications to confidence intervals
    Ruidong Han
    Xinghui Wang
    Shuhe Hu
    Statistical Methods & Applications, 2018, 27 : 479 - 490
  • [2] Shrinkage for covariance estimation: asymptotics, confidence intervals, bounds and applications in sensor monitoring and finance
    Ansgar Steland
    Statistical Papers, 2018, 59 : 1441 - 1462
  • [3] Shrinkage for covariance estimation: asymptotics, confidence intervals, bounds and applications in sensor monitoring and finance
    Steland, Ansgar
    STATISTICAL PAPERS, 2018, 59 (04) : 1441 - 1462
  • [4] Least absolute deviation estimation for AR(1) processes with roots close to unity
    Ma, Nannan
    Sang, Hailin
    Yang, Guangyu
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (05) : 799 - 832
  • [5] Algorithm of variance estimation in weighted least squares method
    Prasolov, Aleksander V.
    Ivanov, Nikita G.
    Smirnov, Nikolay V.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2023, 19 (04): : 484 - 496
  • [6] Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models
    Francq, Christian
    Roy, Roch
    Saidi, Abdessamad
    JOURNAL OF TIME SERIES ANALYSIS, 2011, 32 (06) : 699 - 723
  • [7] Weighted-average least squares estimation of generalized linear models
    De Luca, Giuseppe
    Magnus, Jan R.
    Peracchi, Franco
    JOURNAL OF ECONOMETRICS, 2018, 204 (01) : 1 - 17
  • [8] Estimation of STAR-GARCH Models with Iteratively Weighted Least Squares
    Midilic, Murat
    COMPUTATIONAL ECONOMICS, 2020, 55 (01) : 87 - 117
  • [9] On weighted least squares estimation for parameters of the two-parameter Weibull distribution
    Zhang, L. F.
    Xie, M.
    Tang, L. C.
    TWELFTH ISSAT INTERNATIONAL CONFERENCE RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2006, : 318 - +
  • [10] Distributed weighted least-squares estimation for networked systems with edge measurements
    Yang, Qiqi
    Zhang, Zhaorong
    Fu, Minyue
    AUTOMATICA, 2020, 120