Quantitative stability analysis of optimal solutions in PDE-constrained optimization

被引:9
作者
Brandes, Kerstin
Griesse, Roland
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
[2] Univ Bayreuth, Lehrstuhl Ingenieurmath, D-95440 Bayreuth, Germany
关键词
PDE-constrained optimization; parametric sensitivity analysis; stability; singular value decomposition;
D O I
10.1016/j.cam.2006.08.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
PDE-constrained optimization problems under the influence of perturbation parameters are considered. A quantitative stability analysis for local optimal solutions is performed. The perturbation directions of greatest impact on an observed quantity are characterized using the singular value decomposition of a certain linear operator. An efficient numerical method is proposed to compute a partial singular value decomposition for discretized problems, with an emphasis on infinite-dimensional parameter and observation spaces. Numerical examples are provided. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:908 / 926
页数:19
相关论文
共 50 条
  • [31] A radial basis function method for solving PDE-constrained optimization problems
    John W. Pearson
    Numerical Algorithms, 2013, 64 : 481 - 506
  • [32] A MEASURE APPROXIMATION FOR DISTRIBUTION ALLY ROBUST PDE-CONSTRAINED OPTIMIZATION PROBLEMS
    Kouri, D. P.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 3147 - 3172
  • [33] Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters
    Martin, Matthieu
    Krumscheid, Sebastian
    Nobile, Fabio
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (04): : 1599 - 1633
  • [34] PDE-CONSTRAINED OPTIMIZATION WITH LOCAL CONTROL AND BOUNDARY OBSERVATIONS: ROBUST PRECONDITIONERS
    Elvetun, Ole Loseth
    Nielsen, Bjorn Fredrik
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06) : A3461 - A3491
  • [35] A radial basis function method for solving PDE-constrained optimization problems
    Pearson, John W.
    NUMERICAL ALGORITHMS, 2013, 64 (03) : 481 - 506
  • [36] Second-order adjoints for solving PDE-constrained optimization problems
    Cioaca, Alexandru
    Alexe, Mihai
    Sandu, Adrian
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5) : 625 - 653
  • [37] Transport-Theory-based Multispectral Imaging with PDE-constrained Optimization
    Kim, Hyun Keol
    Flexman, Molly
    Yamashiro, Darrell J.
    Kandel, Jessica J.
    Hielscher, Andreas H.
    OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF TISSUE IX, 2011, 7896
  • [38] Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization
    Kouri, D. P.
    Surowiec, T. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (02): : 787 - 815
  • [39] Iterative PDE-Constrained Optimization for Seismic Full-Waveform Inversion
    Malovichko, M. S.
    Orazbayev, A.
    Khokhlov, N. I.
    Petrov, I. B.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (05) : 954 - 966
  • [40] Data assimilation in weather forecasting: a case study in PDE-constrained optimization
    Fisher, Mike
    Nocedal, Jorge
    Tremolet, Yannick
    Wright, Stephen J.
    OPTIMIZATION AND ENGINEERING, 2009, 10 (03) : 409 - 426