Quantitative stability analysis of optimal solutions in PDE-constrained optimization

被引:9
作者
Brandes, Kerstin
Griesse, Roland
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math RICAM, A-4040 Linz, Austria
[2] Univ Bayreuth, Lehrstuhl Ingenieurmath, D-95440 Bayreuth, Germany
关键词
PDE-constrained optimization; parametric sensitivity analysis; stability; singular value decomposition;
D O I
10.1016/j.cam.2006.08.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
PDE-constrained optimization problems under the influence of perturbation parameters are considered. A quantitative stability analysis for local optimal solutions is performed. The perturbation directions of greatest impact on an observed quantity are characterized using the singular value decomposition of a certain linear operator. An efficient numerical method is proposed to compute a partial singular value decomposition for discretized problems, with an emphasis on infinite-dimensional parameter and observation spaces. Numerical examples are provided. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:908 / 926
页数:19
相关论文
共 19 条
[1]  
Deimling K., 1985, Nonlinear Functional Analysis, DOI [10.1007/978-3-662-00547-7, DOI 10.1007/978-3-662-00547-7]
[2]  
Engl H.W., 1996, Regularization of inverse problem
[3]  
Fournier J R., 2003, Sobolev Spaces
[4]   Parametric sensitivity analysis in optimal control of a reaction diffusion system. I. Solution differentiability [J].
Griesse, R .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (1-2) :93-117
[5]   Parametric sensitivity analysis in optimal control of a reaction-diffusion system - part II: practical methods and examples [J].
Griesse, R .
OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (02) :217-242
[6]  
GRIESSE R, IN PRESS SIAM J SCI
[7]   Second order methods for optimal control of time-dependent fluid flow [J].
Hinze, M ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (03) :925-946
[8]  
Jolliffe I. T., 1986, PRINCIPAL COMPONENT, DOI DOI 10.1016/0169-7439(87)80084-9
[9]  
Lehoucq R.B., 1998, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, DOI DOI 10.1137/1.9780898719628
[10]  
Malanowski K, 2002, J CONVEX ANAL, V9, P543