A deep learning algorithm to translate and classify cardiac electrophysiology

被引:22
作者
Aghasafari, Parya [1 ]
Yang, Pei-Chi [1 ]
Kernik, Divya C. [2 ]
Sakamoto, Kazuho [3 ]
Kanda, Yasunari [4 ]
Kurokawa, Junko [3 ]
Vorobyov, Igor [1 ,5 ]
Clancy, Colleen E. [1 ]
机构
[1] Univ Calif Davis, Dept Physiol & Membrane Biol, Davis, CA 95616 USA
[2] Washington Univ, St Louis, MO 63110 USA
[3] Univ Shizuoka, Sch Pharmaceut Sci, Dept Bioinformat Pharmacol, Shizuoka, Japan
[4] Natl Inst Hlth Sci, Div Pharmacol, Kawasaki, Kanagawa, Japan
[5] Univ Calif Davis, Dept Pharmacol, Davis, CA 95616 USA
关键词
CELL-DERIVED CARDIOMYOCYTES; PLURIPOTENT STEM-CELLS; STRATEGIES;
D O I
10.7554/eLife.68335
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has been a critical in vitro advance in the study of patient-specific physiology, pathophysiology, and pharmacology. We designed a new deep learning multitask network approach intended to address the low throughput, high variability, and immature phenotype of the iPSC-CM platform. The rationale for combining translation and classification tasks is because the most likely application of the deep learning technology we describe here is to translate iPSC-CMs following application of a perturbation. The deep learning network was trained using simulated action potential (AP) data and applied to classify cells into the drug-free and drugged categories and to predict the impact of electrophysiological perturbation across the continuum of aging from the immature iPSC-CMs to the adult ventricular myocytes. The phase of the AP extremely sensitive to perturbation due to a steep rise of the membrane resistance was found to contain the key information required for successful network multitasking. We also demonstrated successful translation of both experimental and simulated iPSC-CM AP data validating our network by prediction of experimental drug-induced effects on adult cardiomyocyte APs by the latter.
引用
收藏
页数:24
相关论文
共 81 条
[1]  
Aghasafari P, 2021, MULTITASK NETWORK
[2]   Machine Learning to Classify Intracardiac Electrical Patterns During Atrial Fibrillation Machine Learning of Atrial Fibrillation [J].
Alhusseini, Mahmood I. ;
Abuzaid, Firas ;
Rogers, Albert J. ;
Zaman, Junaid A. B. ;
Baykaner, Tina ;
Clopton, Paul ;
Bailis, Peter ;
Zaharia, Matei ;
Wang, Paul J. ;
Rappel, Wouter-Jan ;
Narayan, Sanjiv M. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) :E008160
[3]  
Atkinson K. E., 2008, An introduction to numerical analysis
[4]  
Ballinger B, 2018, AAAI CONF ARTIF INTE, P2079
[5]  
Bian M, 2019, CHIN C PATT REC COMP
[6]   International Multisite Study of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Proarrhythmic Potential Assessment [J].
Blinova, Ksenia ;
Dang, Qianyu ;
Millard, Daniel ;
Smith, Godfrey ;
Pierson, Jennifer ;
Guo, Liang ;
Brock, Mathew ;
Lu, Hua Rong ;
Kraushaar, Udo ;
Zeng, Haoyu ;
Shi, Hong ;
Zhang, Xiaoyu ;
Sawada, Kohei ;
Osada, Tomoharu ;
Kanda, Yasunari ;
Sekino, Yuko ;
Pang, Li ;
Feaster, Tromondae K. ;
Kettenhofen, Ralf ;
Stockbridge, Norman ;
Strauss, David G. ;
Gintant, Gary .
CELL REPORTS, 2018, 24 (13) :3582-3592
[7]   Comprehensive Translational Assessment of Human-Induced Pluripotent Stem Cell Derived Cardiomyocytes for Evaluating Drug-Induced Arrhythmias [J].
Blinova, Ksenia ;
Stohlman, Jayna ;
Vicente, Jose ;
Chan, Dulciana ;
Johannesen, Lars ;
Hortigon-Vinagre, Maria P. ;
Zamora, Victor ;
Smith, Godfrey ;
Crumb, William J. ;
Pang, Li ;
Lyn-Cook, Beverly ;
Ross, James ;
Brock, Mathew ;
Chvatal, Stacie ;
Millard, Daniel ;
Galeotti, Loriano ;
Stockbridge, Norman ;
Strauss, David G. .
TOXICOLOGICAL SCIENCES, 2017, 155 (01) :234-247
[8]   Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity [J].
Burridge, Paul W. ;
Li, Yong Fuga ;
Matsa, Elena ;
Wu, Haodi ;
Ong, Sang-Ging ;
Sharma, Arun ;
Holmstrom, Alexandra ;
Chang, Alex C. ;
Coronado, Michael J. ;
Ebert, Antje D. ;
Knowles, Joshua W. ;
Telli, Melinda L. ;
Witteles, Ronald M. ;
Blau, Helen M. ;
Bernstein, Daniel ;
Altman, Russ B. ;
Wu, Joseph C. .
NATURE MEDICINE, 2016, 22 (05) :547-556
[9]   Deep Learning-Based Prediction of Drug-Induced Cardiotoxicity [J].
Cai, Chuipu ;
Guo, Pengfei ;
Zhou, Yadi ;
Zhou, Jingwei ;
Wang, Qi ;
Zhang, Fengxue ;
Fang, Jiansong ;
Cheng, Feixiong .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) :1073-1084
[10]  
Carugo O, 2010, METHODS MOL BIOL, V609, P1, DOI 10.1007/978-1-60327-241-4