Divorticity and dihelicity in two-dimensional hydrodynamics

被引:4
|
作者
Shivamoggi, B. K. [1 ,2 ,4 ]
van Heijst, G. J. F. [1 ,2 ]
Rasmussen, J. Juul [3 ]
机构
[1] Eindhoven Univ Technol, JM Burgers Ctr, NL-5600 MB Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Fluid Dynam Lab, Dept Phys, NL-5600 MB Eindhoven, Netherlands
[3] Tech Univ Denmark, Plasma Phys & Technol Programme, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark
[4] Univ Cent Florida, Orlando, FL 32816 USA
关键词
ENSTROPHY CASCADES; INVERSE ENERGY; VORTEX LINES; SOAP FILMS; TURBULENCE; VORTICITY; DYNAMICS; FLOWS; IDEAL;
D O I
10.1016/j.physleta.2010.03.062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A framework is developed based on the concepts of divorticity B (equivalent to del x omega, omega being the vorticity) and dihelicity g (equivalent to v . B) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant constraints on the evolution of divorticity lines in (C) 2D hydrodynamics. 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2309 / 2311
页数:3
相关论文
共 50 条
  • [1] Integrable quantum hydrodynamics in two-dimensional phase space
    Bettelheim, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (50)
  • [3] Two-dimensional hydrodynamics of a Janus particle vesicle
    Fu, Szu-Pei
    Quaife, Bryan
    Ryham, Rolf
    Young, Y-N
    JOURNAL OF FLUID MECHANICS, 2022, 941
  • [4] Global regularity of two-dimensional flocking hydrodynamics
    He, Siming
    Tadmor, Eitan
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (07) : 795 - 805
  • [5] Virial theorem for Onsager vortices in two-dimensional hydrodynamics
    Pierre-Henri Chavanis
    The European Physical Journal Plus, 127
  • [6] Canonical scale separation in two-dimensional incompressible hydrodynamics
    Modin, Klas
    Viviani, Milo
    JOURNAL OF FLUID MECHANICS, 2022, 943
  • [7] Two-dimensional non-linear hydrodynamics and nanofluidics
    Trushin, Maxim
    Carvalho, Alexandra
    Castro Neto, A. H.
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [8] An Adaptive Moving Mesh Method for Two-Dimensional Relativistic Hydrodynamics
    He, Peng
    Tang, Huazhong
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 11 (01) : 114 - 146
  • [9] A numerical study of the Navier-Stokes transport coefficients for two-dimensional granular hydrodynamics
    Almazan, Lidia
    Carrillo, Jose A.
    Saluena, Clara
    Garzo, Vicente
    Poeschel, Thorsten
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [10] Hydrodynamics of noncircular vortices in beams of light and other two-dimensional fluids
    Andersen, Jasmine M.
    Voitiv, Andrew A.
    Siemens, Mark E.
    Lusk, Mark T.
    PHYSICAL REVIEW A, 2021, 104 (03)