Effects of hierarchical migration in a parallel distributed parameter-free GA

被引:0
|
作者
Sawai, H [1 ]
Adachi, S [1 ]
机构
[1] Minist Posts & Telecommun, Commun Res Lab, Intelligent Commun Div, Koganei, Tokyo 1848795, Japan
来源
PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2000年
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Effects of hierarchical migration methods in a parallel distributed Parameter-free GA (PfGA) are described. The PfGA is a compact and robust algorithm that extracts a local population from whole population, and evolve it by adaptively changing the size of subpopulation. We propose hierarchically parallel distributed architectures with migration methods for the PfGA implementing them in a parallel machine. In evaluating many function optimization problems as recent benchmark tests, we verified that the proposed parallel PfGA architectures with the migration methods effectively decrease the number of evaluations to converge with the success rates held or improved by increasing the number of subpopulations.
引用
收藏
页码:1117 / 1124
页数:8
相关论文
共 50 条
  • [1] Parallel distributed processing of a parameter-free GA by using hierarchical migration methods
    Sawai, H
    Adachi, S
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 579 - 586
  • [2] Effects of migration methods in parallel distributed parameter-free genetic algorithm
    Adachi, S
    Sawai, H
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 2002, 85 (11): : 71 - 80
  • [3] Parameter-free Hierarchical Image Segmentation
    Abdullah, S. M.
    Tischer, Peter
    Wijewickrema, Sudanthi
    Paplinski, Andrew
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [4] Hierarchical, Parameter-Free Community Discovery
    Papadimitriou, Spiros
    Sun, Jimeng
    Faloutsos, Christos
    Yu, Philip S.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART II, PROCEEDINGS, 2008, 5212 : 170 - +
  • [5] A distributed parameter-free Genetic Algorithm
    Lu, XD
    Wang, JC
    Deng, QN
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 543 - 546
  • [6] Empirical performance evaluation of a parameter-free GA for JS']JSSP
    Matsui, S
    Watanabe, I
    Tokoro, K
    GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS, 2004, 3103 : 1318 - 1319
  • [7] Parallel algorithms for parameter-free structural diversity search on graphs
    Jinbin Huang
    Xin Huang
    Yuanyuan Zhu
    Jianliang Xu
    World Wide Web, 2021, 24 : 397 - 417
  • [8] Parallel algorithms for parameter-free structural diversity search on graphs
    Huang, Jinbin
    Huang, Xin
    Zhu, Yuanyuan
    Xu, Jianliang
    World Wide Web, 2021, 24 (01) : 397 - 417
  • [9] Parallel algorithms for parameter-free structural diversity search on graphs
    Huang, Jinbin
    Huang, Xin
    Zhu, Yuanyuan
    Xu, Jianliang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (01): : 397 - 417
  • [10] Parameter-free uniformisation
    Friedman, Sy-David
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) : 3327 - 3330