A computationally efficient method for tempered fractional differential equations with application

被引:41
作者
Moghaddam, Behrouz Parsa [1 ]
Machado, J. A. Tenreiro [2 ]
Babaei, Afshin [3 ]
机构
[1] Islamic Azad Univ, Lahijan Branch, Dept Math, Lahijan, Iran
[2] Inst Engn, Dept Elect Engn, Rua Dr Antonio Bernardino de Almeida 431, P-4249015 Porto, Portugal
[3] Univ Mazandaran, Dept Math, POB 47416 95447, Babol Sar, Iran
关键词
Tempered fractional calculus; Computational method; Sinc-collocation method; Convergence order; The lumped capacitance model; APPROXIMATIONS; ALGORITHMS; DIFFUSION;
D O I
10.1007/s40314-017-0522-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the numerical approximation of the tempered fractional integral by using the Sinc-collocation scheme. The algorithm is extended to solve a class of tempered fractional differential equations that converges to the solution with exponential rate. Several numerical examples compare the numerical approximations with the exact solutions. The behavioral responses of the lumped capacitance model with tempered fractional order for transient conduction are investigated. The efficiency and accuracy of the proposed scheme are analyzed in the perspective of the -norm error and convergence order.
引用
收藏
页码:3657 / 3671
页数:15
相关论文
共 46 条
  • [11] Efficient modified Chebyshev differentiation matrices for fractional differential equations
    Dabiri, Arman
    Butcher, Eric A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 50 : 284 - 310
  • [12] Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation
    Dabiri, Arman
    Butcher, Eric A.
    Nazari, Morad
    [J]. JOURNAL OF SOUND AND VIBRATION, 2017, 388 : 230 - 244
  • [13] Fast predictor-corrector approach for the tempered fractional differential equations
    Deng, Jingwei
    Zhao, Lijing
    Wu, Yujiang
    [J]. NUMERICAL ALGORITHMS, 2017, 74 (03) : 717 - 754
  • [14] On shifted Jacobi spectral approximations for solving fractional differential equations
    Doha, E. H.
    Bhrawy, A. H.
    Baleanu, D.
    Ezz-Eldien, S. S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8042 - 8056
  • [15] El-Sayed AMA, 2004, COMPUT APPL MATH, V23, P33, DOI 10.1590/S1807-03022004000100002
  • [16] A CHEBYSHEV PSEUDOSPECTRAL METHOD TO SOLVE THE SPACE-TIME TEMPERED FRACTIONAL DIFFUSION EQUATION
    Hanert, Emmanuel
    Piret, Cecile
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04) : A1797 - A1812
  • [17] Hilfer R., 2000, Applications of fractional calculus in physics, pviii, DOI DOI 10.1142/9789812817747
  • [18] On fractional tempered stable motion
    Houdre, C.
    Kawai, R.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (08) : 1161 - 1184
  • [19] Incropera F., 2001, FUNDAMENTALS HEAT MA, V5th
  • [20] Transport in the spatially tempered, fractional Fokker-Planck equation
    Kullberg, A.
    del-Castillo-Negrete, D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)