A computationally efficient method for tempered fractional differential equations with application

被引:41
作者
Moghaddam, Behrouz Parsa [1 ]
Machado, J. A. Tenreiro [2 ]
Babaei, Afshin [3 ]
机构
[1] Islamic Azad Univ, Lahijan Branch, Dept Math, Lahijan, Iran
[2] Inst Engn, Dept Elect Engn, Rua Dr Antonio Bernardino de Almeida 431, P-4249015 Porto, Portugal
[3] Univ Mazandaran, Dept Math, POB 47416 95447, Babol Sar, Iran
关键词
Tempered fractional calculus; Computational method; Sinc-collocation method; Convergence order; The lumped capacitance model; APPROXIMATIONS; ALGORITHMS; DIFFUSION;
D O I
10.1007/s40314-017-0522-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the numerical approximation of the tempered fractional integral by using the Sinc-collocation scheme. The algorithm is extended to solve a class of tempered fractional differential equations that converges to the solution with exponential rate. Several numerical examples compare the numerical approximations with the exact solutions. The behavioral responses of the lumped capacitance model with tempered fractional order for transient conduction are investigated. The efficiency and accuracy of the proposed scheme are analyzed in the perspective of the -norm error and convergence order.
引用
收藏
页码:3657 / 3671
页数:15
相关论文
共 46 条
  • [1] [Anonymous], 2016 AM CONTR C ACC
  • [2] [Anonymous], AM CONTR C ACC
  • [4] Baleanu D., 2010, Machado. New Trends in Nanotechnology and Fractional Calculus Applications, DOI DOI 10.1007/978-90-481-3293-5
  • [5] Sinc-Approximations of Fractional Operators: A Computing Approach
    Baumann, Gerd
    Stenger, Frank
    [J]. MATHEMATICS, 2015, 3 (02): : 444 - 480
  • [6] FRACTIONAL CALCULUS AND SINC METHODS
    Baumann, Gerd
    Stenger, Frank
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (04) : 568 - 622
  • [7] Solving fractional optimal control problems within a Chebyshev-Legendre operational technique
    Bhrawy, A. H.
    Ezz-Eldien, S. S.
    Doha, E. H.
    Abdelkawy, M. A.
    Baleanu, D.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (06) : 1230 - 1244
  • [8] Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation
    Bhrawy, A. H.
    Zaky, M. A.
    [J]. NONLINEAR DYNAMICS, 2015, 80 (1-2) : 101 - 116
  • [9] Buschman RG., 1972, SIAM J. Math. Anal, V3, P83, DOI [10.1137/0503010, DOI 10.1137/0503010]
  • [10] Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations
    Dabiri, Arman
    Butcher, Eric A.
    [J]. NONLINEAR DYNAMICS, 2017, 90 (01) : 185 - 201