Effects of predation efficiencies on the dynamics of a tritrophic food chain

被引:3
作者
Cassinari, Maria Paola
Groppi, Maria
Tebaldi, Claudio
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
[3] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
tritrophic system; stability; bifurcations; limit cycles;
D O I
10.3934/mbe.2007.4.431
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper the dynamics of a tritrophic food chain (resource, consumer, top predator) is investigated, with particular attention not only to equilibrium states but also to cyclic behaviours that the system may exhibit. The analysis is performed in terms of two bifurcation parameters, denoted by p and q, which measure the efficiencies of the interaction processes. The persistence of the system is discussed, characterizing in the (p, q) plane the regions of existence and stability of biologically significant steady states and those of existence of limit cycles. The bifurcations occurring are discussed, and their implications with reference to biological control problems are considered. Examples of the rich dynamics exhibited by the model, including a chaotic regime, are described.
引用
收藏
页码:431 / 456
页数:26
相关论文
共 33 条
[1]  
[Anonymous], NONLINEAR OSCILLATIO
[2]   COUPLING IN PREDATOR PREY DYNAMICS - RATIO-DEPENDENCE [J].
ARDITI, R ;
GINZBURG, LR .
JOURNAL OF THEORETICAL BIOLOGY, 1989, 139 (03) :311-326
[3]  
BAZYKIN AD, 1998, SERIES NONLINEAR S A, V11
[4]   Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain [J].
Boer, MP ;
Kooi, BW ;
Kooijman, SALM .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 39 (01) :19-38
[5]   Modelling of predator-prey trophic interactions. Part I: two trophic levels [J].
Buffoni, G ;
Cassinari, MP ;
Groppi, M ;
Serluca, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 50 (06) :713-732
[6]   A lumped parameter model for acarine predator-prey population interactions [J].
Buffoni, G ;
Gilioli, G .
ECOLOGICAL MODELLING, 2003, 170 (2-3) :155-171
[7]   The local dynamics of a tri-trophic system [J].
Buffoni, G ;
Di Cola, G ;
Garaventa, L .
ECOLOGICAL MODELLING, 2001, 138 (1-3) :31-39
[8]   Extinction of top-predator in a three-level food-chain model [J].
Chiu, CH ;
Hsu, SB .
JOURNAL OF MATHEMATICAL BIOLOGY, 1998, 37 (04) :372-380
[9]   Singular homoclinic bifurcations in tritrophic food chains [J].
De Feo, O ;
Rinaldi, S .
MATHEMATICAL BIOSCIENCES, 1998, 148 (01) :7-20
[10]   GLOBAL STABILITY AND PERSISTENCE OF SIMPLE FOOD-CHAINS [J].
FREEDMAN, HI ;
SO, JWH .
MATHEMATICAL BIOSCIENCES, 1985, 76 (01) :69-86