Accurate Binding Free Energy Method from End-State MD Simulations

被引:26
作者
Akkus, Ebru [1 ]
Tayfuroglu, Omer [2 ]
Yildiz, Muslum [3 ]
Kocak, Abdulkadir [2 ]
机构
[1] Gebze Tech Univ, Dept Bioengn, TR-41400 Gebze, Kocaeli, Turkey
[2] Gebze Tech Univ, Dept Chem, TR-41400 Gebze, Kocaeli, Turkey
[3] Gebze Tech Univ, Dept Mol Biol & Genet, TR-41400 Gebze, Kocaeli, Turkey
关键词
MOLECULAR-DYNAMICS SIMULATIONS; BENNETTS ACCEPTANCE RATIO; THERMODYNAMIC INTEGRATION; LINEAR-RESPONSE; INHIBITORS; DOCKING; CRYSTALLOGRAPHY; NEURAMINIDASE; CONVERGENCE; PERFORMANCE;
D O I
10.1021/acs.jcim.2c00601
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Herein, we introduce a new strategy to estimate binding free energies using end-state molecular dynamics simulation trajectories. The method is adopted from linear interaction energy (LIE) and ANI-2x neural network potentials (machine learning) for the atomic simulation environment (ASE). It predicts the single-point interaction energies between ligand-protein and ligand- solvent pairs at the accuracy of the wb97x/6-31G* level for the conformational space that is sampled by molecular dynamics (MD) simulations. Our results on 54 protein-ligand complexes show that the method can be accurate and have a correlation of R = 0.87-0.88 to the experimental binding free energies, outperforming current end-state methods with reduced computational cost. The method also allows us to compare BFEs of ligands with different scaffolds. The code is available free of charge (documentation and test files) at https://github.com/otayfuroglu/deepQM.
引用
收藏
页码:4095 / 4106
页数:12
相关论文
共 91 条
  • [51] g_mmpbsa-A GROMACS Tool for High-Throughput MM-PBSA Calculations
    Kumari, Rashmi
    Kumar, Rajendra
    Lynn, Andrew
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (07) : 1951 - 1962
  • [52] Novel type of virtual ligand screening on the basis of quantum-chemical calculations for protein-ligand complexes and extended clustering techniques
    Kurauchi, Ryo
    Watanabe, Chiduru
    Fukuzawa, Kaori
    Tanaka, Shigenori
    [J]. COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2015, 1061 : 12 - 22
  • [53] Chopping and Changing: the Evolution of the Flavin-dependent Monooxygenases
    Laura Mascotti, Maria
    Juri Ayub, Maximiliano
    Furnham, Nicholas
    Thornton, Janet M.
    Laskowski, Roman A.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2016, 428 (15) : 3131 - 3146
  • [54] Thermodynamic integration to predict host-guest binding affinities
    Lawrenz, Morgan
    Wereszczynski, Jeff
    Ortiz-Sanchez, Juan Manuel
    Nichols, Sara E.
    McCammon, J. Andrew
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2012, 26 (05) : 569 - 576
  • [55] Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery
    Lee, Tai-Sung
    Allen, Bryce K.
    Giese, Timothy J.
    Guo, Zhenyu
    Li, Pengfei
    Lin, Charles
    McGee, T. Dwight, Jr.
    Pearlman, David A.
    Radak, Brian K.
    Tao, Yujun
    Tsai, Hsu-Chun
    Xu, Huafeng
    Sherman, Woody
    York, Darrin M.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (11) : 5595 - 5623
  • [56] Accelerated Computation of Free Energy Profile at ab Initio Quantum Mechanical/Molecular Mechanics Accuracy via a Semi-Empirical Reference Potential. I. Weighted Thermodynamics Perturbation
    Li, Pengfei
    Jia, Xiangyu
    Pan, Xiaoliang
    Shao, Yihan
    Mei, Ye
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (11) : 5583 - 5596
  • [57] Repulsive Soft-Core Potentials for Efficient Alchemical Free Energy Calculations
    Li, Yaozong
    Nam, Kwangho
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (08) : 4776 - 4789
  • [58] Molecular Dynamics with On-the-Fly Machine Learning of Quantum-Mechanical Forces
    Li, Zhenwei
    Kermode, James R.
    De Vita, Alessandro
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (09)
  • [59] Ligand binding free energy and kinetics calculation in 2020
    Limongelli, Vittorio
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2020, 10 (04)
  • [60] Lindahl A., 2021, **DATA OBJECT**, DOI 10.5281/ZENODO.4576055