Arithmetic properties of the sequence of derangements

被引:6
作者
Miska, Piotr [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Krakow, Poland
关键词
Derangement; Hensel's lemma; p-adic valuation; Periodicity; Prime number; FACTORIALS; SUMS;
D O I
10.1016/j.jnt.2015.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sequence of derangements is given by the formula D-0 = 1, D-n = nD(n-1) + (-1)(n) n > 0. It is a classical object appearing in combinatorics and number theory. In this paper we consider such arithmetic properties of the sequence of derangements as: periodicity modulo d, where d is an element of N+, p-adic valuations and prime divisors. Next, we use them to establish arithmetic properties of the sequences of even and odd derangements. (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 145
页数:32
相关论文
共 23 条
  • [1] Amdeberhan T., 2013, INTEGERS, V13, pA21
  • [2] [Anonymous], 2000, The mathematica book
  • [3] On the Brocard-Ramanujan diophantine equation n!+1=m2
    Berndt, BC
    Galway, WF
    [J]. RAMANUJAN JOURNAL, 2000, 4 (01) : 41 - 42
  • [4] Bollman M, 2010, PUBL MATH-DEBRECEN, V77, P211
  • [5] Cassels J. W. S., 1986, Local Fields
  • [6] Dabrowski A., 1996, NIEUW ARCH WISK, V14, P321
  • [7] Variations on the Brocard-Ramanujan equation
    Dabrowski, Andrzej
    Ulas, Maciej
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (04) : 1168 - 1185
  • [8] Erdos P., 1937, Acta Szeged, V8, P241
  • [9] Gawron M., 2013, C MATH, V131
  • [10] Sums of factorials in binary recurrence sequences
    Grossman, G
    Luca, F
    [J]. JOURNAL OF NUMBER THEORY, 2002, 93 (02) : 87 - 107