An Accelerated Explicit Method and GPU Parallel Computing for Thermal Stress and Welding Deformation of Automotive Parts

被引:12
|
作者
Ma, Ninshu [1 ,2 ]
Yuan, Shijian [3 ]
机构
[1] Osaka Univ, Joining & Welding Res Inst, 11-1 Mihogaoka, Osaka 5670047, Japan
[2] JSOL Corp, Engn Technol Div, Nishi Ku, 2-2-4 Tosabori, Osaka 5500001, Japan
[3] Harbin Inst Technol, Sch Mat Sci & Technol, 92 West Dazhi St, Harbin 15001, Peoples R China
关键词
Accelerated explicit method; GPU parallel computing; large scale models; thermal stress; welding deformation; automotive parts; FINITE-ELEMENT MODEL; RESIDUAL-STRESSES; NUMERICAL-SIMULATION; INHERENT STRAIN; BUTT-JOINT; PREDICTION;
D O I
10.1142/S175882511650023X
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An accelerated explicit method and GPU parallel computing program of finite element method (FEM) are developed for simulating transient thermal stress and welding deformation in large scale models. In the accelerated explicit method, a two-stage computation scheme is employed. The first computation stage is based on a dynamic explicit method considering the characteristics of the welding mechanical process by controlling both the temperature increment and time scaling parameter. In the second computation stage, a static equilibrium computation scheme is implemented after thermal loading to obtain a static solution of transient thermal stress and welding deformation. It has been demonstrated that the developed GPU parallel computing program has a good scalability for large scale models of more than 20 million degrees of freedom (DOFs). The validity of the accelerated explicit method is verified by comparing the transient thermal deformation and residual stresses with those computed by the implicit FEM and experimental measurements. Finally, the thermal stress and strain in an automotive engine cradle model with more than 12 million DOFs were efficiently computed and the results are discussed.
引用
收藏
页数:23
相关论文
共 41 条
  • [41] An efficient parallel computing method for random vibration analysis of a three-dimensional train-track-soil coupled model using Seed-PCG algorithm基于Seed-PCG法的列车-轨道-地基土三维随机振动GPU并行计算方法
    Zhi-hui Zhu
    Yang Feng
    Xiao Yang
    Hao Li
    You Zou
    Journal of Central South University, 2024, 31 : 302 - 316