Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function

被引:210
|
作者
Chung, Haegeun
Zak, Donald R.
Reich, Peter B.
Ellsworth, David S.
机构
[1] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA
[3] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA
关键词
complementary resource use; extracellular enzymes; FACE (free-air carbon dioxide enrichment); global change; grassland ecosystem; microbial biomass; phospholipid fatty acid (PLFA); plant diversity; soil C cycling; soil fungi;
D O I
10.1111/j.1365-2486.2007.01313.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
We determined soil microbial community composition and function in a field experiment in which plant communities of increasing species richness were exposed to factorial elevated CO2 and nitrogen (N) deposition treatments. Because elevated CO2 and N deposition increased plant productivity to a greater extent in more diverse plant assemblages, it is plausible that heterotrophic microbial communities would experience greater substrate availability, potentially increasing microbial activity, and accelerating soil carbon (C) and N cycling. We, therefore, hypothesized that the response of microbial communities to elevated CO2 and N deposition is contingent on the species richness of plant communities. Microbial community composition was determined by phospholipid fatty acid analysis, and function was measured using the activity of key extracellular enzymes involved in litter decomposition. Higher plant species richness, as a main effect, fostered greater microbial biomass, cellulolytic and chitinolytic capacity, as well as the abundance of saprophytic and arbuscular mycorrhizal (AM) fungi. Moreover, the effect of plant species richness on microbial communities was significantly modified by elevated CO2 and N deposition. For instance, microbial biomass and fungal abundance increased with greater species richness, but only under combinations of elevated CO2 and ambient N, or ambient CO2 and N deposition. Cellobiohydrolase activity increased with higher plant species richness, and this trend was amplified by elevated CO2. In most cases, the effect of plant species richness remained significant even after accounting for the influence of plant biomass. Taken together, our results demonstrate that plant species richness can directly regulate microbial activity and community composition, and that plant species richness is a significant determinant of microbial response to elevated CO2 and N deposition. The strong positive effect of plant species richness on cellulolytic capacity and microbial biomass indicate that the rates of soil C cycling may decline with decreasing plant species richness.
引用
收藏
页码:980 / 989
页数:10
相关论文
共 50 条
  • [31] Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamics
    vanGinkel, JH
    Gorissen, A
    vanVeen, JA
    PLANT AND SOIL, 1997, 188 (02) : 299 - 308
  • [32] Plant species,atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems
    Howard Ferris
    Science in China(Series C:Life Sciences), 2006, (06) : 603 - 612
  • [33] Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems
    Fu Shenglei
    Ferris, Howard
    SCIENCE IN CHINA SERIES C-LIFE SCIENCES, 2006, 49 (06): : 603 - 612
  • [34] Plant species, atmospheric CO2 and soil N interactively or additively control C allocation within plant-soil systems
    Shenglei Fu
    Ferris Howard
    Science in China Series C: Life Sciences, 2006, 49 : 603 - 612
  • [35] Elevated atmospheric CO2 has small, species-specific effects on pollen chemistry and plant growth across flowering plant species
    Bernauer, Olivia M.
    Jain, Anupreksha
    de Bivort, Benjamin
    Holbrook, N. Michele
    Myers, Samuel S.
    Ziska, Lewis H.
    Crall, James D.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [36] Plant and Soil Mediation of Elevated CO2 Impacts on Trace Metals
    Susan M. Natali
    Sergio A. Sañudo-Wilhelmy
    Manuel T. Lerdau
    Ecosystems, 2009, 12 : 715 - 727
  • [37] Biodiversity, Nitrogen Deposition, and CO2 Affect Grassland Soil Carbon Cycling but not Storage
    Reid, Joseph P.
    Adair, E. Carol
    Hobbie, Sarah E.
    Reich, Peter B.
    ECOSYSTEMS, 2012, 15 (04) : 580 - 590
  • [38] Plant and Soil Mediation of Elevated CO2 Impacts on Trace Metals
    Natali, Susan M.
    Sanudo-Wilhelmy, Sergio A.
    Lerdau, Manuel T.
    ECOSYSTEMS, 2009, 12 (05) : 715 - 727
  • [39] Elevated CO2 and Tree Species Affect Microbial Activity and Associated Aggregate Stability in Soil Amended with Litter
    Al-Maliki, Salwan M. J.
    Jones, David L.
    Godbold, Douglas L.
    Gwynn-Jones, Dylan
    Scullion, John
    FORESTS, 2017, 8 (03)
  • [40] Effect of atmospheric N deposition on rhizosphere soil microbial community composition in a semi-arid grassland
    Liu, Hongfei
    Yang, Wu
    He, Lirong
    Coen, Ritsema
    Violette, Geissen
    Liu, Guobin
    Sha, Xue
    PLANT AND SOIL, 2025, 508 (1-2) : 159 - 178