Clay-hydrogen and clay-cushion gas interfacial tensions: Implications for hydrogen storage

被引:66
作者
Yekeen, Nurudeen [1 ]
Al-Yaseri, Ahmed [2 ]
Negash, Berihun Mamo [3 ]
Ali, Muhammad [4 ]
Giwelli, Ausama [5 ]
Esteban, Lionel [5 ]
Sarout, Joel [5 ]
机构
[1] UCSI Univ, Fac Engn Technol & Built Environm, Dept Chem & Petr Engn, 1 Jalan Menara Gading,UCSI Hts Taman Connaught, Kuala Lumpur 56000, Malaysia
[2] King Fahd Univ Petr & Minerals, Coll Petr Engn & Geosci, Ctr Integrat Petr Res CIPR, Dhahran, Saudi Arabia
[3] Univ Teknol PETRONAS, Dept Petr Engn, Seri Iskandar 32610, Perak, Malaysia
[4] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Thuwal 23955, Saudi Arabia
[5] CSIRO Energy, Perth, Australia
关键词
Clay-gas interfacal tension; Clay minerals; Hydrogen; Carbon dioxide; Underground hydrogen storage; TRAPPING CAPACITY; WETTABILITY; PRESSURE; CO2; TEMPERATURE; ENERGY; QUARTZ; H-2; SUBSURFACE; INJECTION;
D O I
10.1016/j.ijhydene.2022.04.103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rock/fluid interfacial tension (gamma(rock-fluid)) govern the fluid flow dynamics, the injection/ withdrawal rates, the gas storage capacity, and containment integrity during gas (H-2, CO2, N-2) geo-storage. Clay-gas interfacial tension (gamma(clay-gas)) data, especially for the clay-H-2 (gamma(clay-H2)), the clay-N-2 (gamma(clay-N2)) and the clay-CO2 (gamma(clay-CO2)) systems, have rarely been reported in the literature due to the challenging nature of these measurements in the laboratory. In this study, Neumann's equation of state and Young-Laplace equation was combined to compute clay-gas and clay-brine interfacial tensions (IFT) parameters at realistic geo-storage temperature (333 K) and pressure (5-20 MPa). Our results show that at similar thermodynamic conditions: gamma(clay-H2) > gamma(clay-N2) > gamma(clay-CO2) . Our calculations also showed that: gamma(kaolinite-N2) > gamma(illite-N2) > gamma(montmorillonite-N2) , and gamma(kaolinite-CO2) > gamma(illite-CO2 )> gamma(montmorillonite-CO2) . In contrast, for hydrogen a negligible difference in gamma(clay-H2) was obtained for the three clay types, although, the IFT between clay minerals and brine in presence of hydrogen is different for these three clay types. Overall, computed gamma(clay-H2) values were higher than gamma(clay-N2) and gamma(clay-CO2) values, whereas computed clay-brine interfacial tension was lower in presence of hydrogen compared to carbon dioxide and nitrogen. These results suggest that nitrogen and carbon dioxide could be used as favorable cushion gas for maintaining formation pressure during underground hydrogen storage. We also demonstrated a remarkable relationship between clay/gas IFT and gas density that could serve as a helpful tool for quick estimation of rock-fluid interfacial tension. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:19155 / 19167
页数:13
相关论文
共 50 条
  • [21] Prediction of hydrogen-brine interfacial tension at subsurface conditions: Implications for hydrogen geo-storage
    Hosseini, Mostafa
    Leonenko, Yuri
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 58 : 485 - 494
  • [22] Underground hydrogen storage in a partially depleted gas condensate reservoir: Influence of cushion gas
    Zamehrian, Mohammad
    Sedaee, Behnam
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 212
  • [23] Geochemical interactions in geological hydrogen Storage: The role of sandstone clay content
    Al-Yaseri, Ahmed
    Yekeen, Nurudeen
    Al-Mukainah, Hani
    Hassanpouryouzband, Aliakbar
    FUEL, 2024, 361
  • [24] Assessment of wettability and rock-fluid interfacial tension of caprock: Implications for hydrogen and carbon dioxide geo-storage
    Ali, Muhammad
    Pan, Bin
    Yekeen, Nurudeen
    Al-Anssari, Sarmad
    Al-Anazi, Amer
    Keshavarz, Alireza
    Iglauer, Stefan
    Hoteit, Hussein
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (30) : 14104 - 14120
  • [25] Influence of nitrogen cushion gas in 3-phase surface phenomena for hydrogen storage in gas condensate reservoirs
    Muhammed, Nasiru Salahu
    Haq, Md. Bashirul
    Al Shehri, Dhafer
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 90 : 607 - 624
  • [26] Advanced Smart Models for Predicting Interfacial Tension in Brine-Hydrogen/Cushion Gas Systems: Implication for Hydrogen Geo-Storage
    Alqahtani, Fahd Mohamad
    Youcefi, Mohamed Riad
    Amar, Menad Nait
    Djema, Hakim
    Ghasemi, Mohammad
    ENERGY & FUELS, 2025, 39 (05) : 2709 - 2720
  • [27] Carbon dioxide as cushion gas for large-scale underground hydrogen storage: Mechanisms and implications
    Deng, Peng
    Ma, Haoming
    Song, Jinghan
    Peng, Xiaolong
    Zhu, Suyang
    Xue, Dan
    Jiang, Liangliang
    Chen, Zhangxin
    APPLIED ENERGY, 2025, 388
  • [28] Hydrogen wettability of clays: Implications for underground hydrogen storage
    Al-Yaseri, Ahmed
    Wolff-Boenisch, Domenik
    Fauziah, Cut Aja
    Iglauer, Stefan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (69) : 34356 - 34361
  • [29] Surface interaction changes in minerals for underground hydrogen storage: Effects of CO2 cushion gas
    Esfandyari, Hamid
    Safari, Alireza
    Hashemi, Ali
    Hassanpouryouzband, Aliakbar
    Haghighi, Manouchehr
    Keshavarz, Alireza
    Zeinijahromi, Abbas
    RENEWABLE ENERGY, 2024, 237
  • [30] Geochemical influences of hydrogen storage in depleted gas reservoirs with N2 cushion gas
    Muhammed, Nasiru Salahu
    Haq, Bashirul
    Al Shehri, Dhafer
    Amao, Abduljamiu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 87 : 782 - 792