CP methods for the Schrodinger equation revisited

被引:38
作者
Ixaru, LG
De Meyer, H
Vanden Berghe, G
机构
[1] State Univ Ghent, Vakgrp Toegepaste Wiskunde & Informat, B-9000 Ghent, Belgium
[2] Inst Phys & Nucl Engn, Dept Theoret Phys, R-76900 Bucharest, Romania
[3] Inst Phys & Nucl Engn, Ctr Comp, R-76900 Bucharest, Romania
关键词
Schrodinger equation; CP methods; initial-value problem; eigenvalue problem; error analysis;
D O I
10.1016/S0377-0427(97)00218-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On constructing CPM propagators with an abundant number of terms by MATHEMATICA, we have shown that the CPM[N, Q], where N is the number of polynomial terms by which the potential is approximated in each interval and Q the number of corrections introduced, is a method of order 2N + 2 at low energies if Q greater than or equal to [2/3 N] + 1 and of order N at high energies if Q greater than or equal to 1. We have also proved that in the last case the error damps out as 1/root E for both initial-and boundary-value problems. We have written a program for boundary-value problems which is of order 12, 10 at low and high energies, respectively, and have found out that it is far more efficient than the well-established codes SL02F, SLEDGE and SLEIGN. (C) 1997 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:289 / 314
页数:26
相关论文
共 12 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   CORRECTION OF NUMEROVS EIGENVALUE ESTIMATES [J].
ANDREW, AL ;
PAINE, JW .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :289-300
[3]  
Bailey P. B., 1978, ACM Transactions on Mathematical Software, V4, P193, DOI 10.1145/355791.355792
[4]  
IXARU IG, 1984, NUMERICAL METHODS DI
[5]   PIECEWISE PERTURBATION-METHODS FOR CALCULATING EIGENSOLUTIONS OF A COMPLEX OPTICAL-POTENTIAL [J].
IXARU, LG ;
RIZEA, M ;
VERTSE, T .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 85 (02) :217-230
[6]   AUTOMATIC SOLUTION OF STURM-LIOUVILLE PROBLEMS USING THE PRUESS METHOD [J].
MARLETTA, M ;
PRYCE, JD .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 39 (01) :57-78
[7]   ON THE CORRECTION OF FINITE-DIFFERENCE EIGENVALUE APPROXIMATIONS FOR STURM-LIOUVILLE PROBLEMS [J].
PAINE, JW ;
de Hoog, FR ;
ANDERSSEN, RS .
COMPUTING, 1981, 26 (02) :123-139
[8]   MATHEMATICAL SOFTWARE FOR STURM-LIOUVILLE PROBLEMS [J].
PRUESS, S ;
FULTON, CT .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1993, 19 (03) :360-376
[9]  
Pryce J., 1993, Monographs on Numerical Analysis
[10]  
PRYCE JD, 1996, SEASCISEDP0396 ROYAL