Vertex operator algebras and irreducibility of certain modules for affine Lie algebras

被引:1
作者
Adamovic, D [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
关键词
affine Lie algebra; vertex operator algebra; Zhu's algebra; tensor products; loop modules; admissible representations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find the connection between the representation theory of vertex operator algebra L(k Lambda(0)) and the irreducibility of tensor products <(V(mu))over bar>xL(k Lambda(0)). In the case of affine Lie algebra A(1)((1)), on every admissible rational level we construct a family of irreducible modules having infinite-dimensional weight spaces.
引用
收藏
页码:809 / 821
页数:13
相关论文
共 14 条
[1]  
ADAMOVIC D, 1996, INT MATH RES NOTICES, V6, P253
[2]  
Adamovic D, 1995, MATH RES LETT, V2, P563
[3]  
[Anonymous], MEM AM MATH SOC
[4]  
[Anonymous], 1993, PROGR MATH
[5]   A NEW FAMILY OF IRREDUCIBLE, INTEGRABLE MODULES FOR AFFINE LIE-ALGEBRAS [J].
CHARI, V ;
PRESSLEY, A .
MATHEMATISCHE ANNALEN, 1987, 277 (03) :543-562
[6]   VERTEX OPERATOR-ALGEBRAS ASSOCIATED TO REPRESENTATIONS OF AFFINE AND VIRASORO ALGEBRAS [J].
FRENKEL, IB ;
ZHU, YC .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (01) :123-168
[7]   Irreducible non-dense A((1))(1)-modules [J].
Futorny, VM .
PACIFIC JOURNAL OF MATHEMATICS, 1996, 172 (01) :83-99
[8]  
Kac V., 1983, Infinite Dimensional Lie Algebras
[9]  
Kac V. G., 1989, Adv. Ser. Math. Phys., V7, P138
[10]   MODULAR INVARIANT REPRESENTATIONS OF INFINITE-DIMENSIONAL LIE-ALGEBRAS AND SUPERALGEBRAS [J].
KAC, VG ;
WAKIMOTO, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (14) :4956-4960