Cdc7 is required throughout the yeast S phase to activate replication origins

被引:177
作者
Donaldson, AD [1 ]
Fangman, WL [1 ]
Brewer, BJ [1 ]
机构
[1] Univ Washington, Dept Genet, Seattle, WA 98195 USA
关键词
Cdc7; kinase; origin; replication; S phase; yeast;
D O I
10.1101/gad.12.4.491
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The long-standing conclusion that the Cdc7 kinase of Saccharomyces cerevisiae is required only to trigger S phase has been challenged by recent data that suggests it acts directly on individual replication origins. We tested the possibility that early-and late-activated origins have different requirements for Cdc7 activity. Cells carrying a cdc7(ts) allele were first arrested in G(1) at the cdc7 block by incubation at 37 degrees C, and then were allowed to enter S phase by brief incubation at 23 degrees C. During the S phase, after return to 37 degrees C, early-firing replication origins were activated, but late origins failed to fire. Similarly, a plasmid with a late-activated origin was defective in replication. As a consequence of the origin activation defect, duplication of chromosomal sequences that are normally replicated from late origins was greatly delayed. Early-replicating regions of the genome duplicated at approximately their normal time. The requirements of early and late origins for Cdc7 appear to be temporally rather than quantitatively different, as reducing overall levels of Cdc7 by growth at semi-permissive temperature reduced activation at early and late origins approximately equally. Our results show that Cdc7 activates early and late origins separately, with late origins requiring the activity later in S phase to permit replication initiation.
引用
收藏
页码:491 / 501
页数:11
相关论文
共 42 条
[1]   CHARACTERIZATION OF THE CDC7 GENE-PRODUCT OF SACCHAROMYCES-CEREVISIAE AS A PROTEIN-KINASE NEEDED FOR THE INITIATION OF MITOTIC DNA-SYNTHESIS [J].
BAHMAN, M ;
BUCK, V ;
WHITE, A ;
ROSAMOND, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 951 (2-3) :335-343
[2]   THE LOCALIZATION OF REPLICATION ORIGINS ON ARS PLASMIDS IN SACCHAROMYCES-CEREVISIAE [J].
BREWER, BJ ;
FANGMAN, WL .
CELL, 1987, 51 (03) :463-471
[3]   INITIATION PREFERENCE AT A YEAST ORIGIN OF REPLICATION [J].
BREWER, BJ ;
FANGMAN, WL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (08) :3418-3422
[4]   THE TOPOGRAPHY OF CHROMOSOME-REPLICATION IN YEAST [J].
BREWER, BJ ;
DILLER, JD ;
FRIEDMAN, KL ;
KOLOR, KM ;
RAGHURAMAN, MK ;
FANGMAN, WL .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1993, 58 :425-434
[5]   MAPPING REPLICATION ORIGINS IN YEAST CHROMOSOMES [J].
BREWER, BJ ;
FANGMAN, WL .
BIOESSAYS, 1991, 13 (07) :317-322
[6]   THE ARREST OF REPLICATION FORKS IN THE RDNA OF YEAST OCCURS INDEPENDENTLY OF TRANSCRIPTION [J].
BREWER, BJ ;
LOCKSHON, D ;
FANGMAN, WL .
CELL, 1992, 71 (02) :267-276
[7]   THE YEAST GENE, DBF4, ESSENTIAL FOR ENTRY INTO S-PHASE IS CELL-CYCLE REGULATED [J].
CHAPMAN, JW ;
JOHNSTON, LH .
EXPERIMENTAL CELL RESEARCH, 1989, 180 (02) :419-428
[8]   The role of MCM/P1 proteins in the licensing of DNA replication [J].
Chong, JPJ ;
Thommes, P ;
Blow, JJ .
TRENDS IN BIOCHEMICAL SCIENCES, 1996, 21 (03) :102-106
[9]   GENETIC CONTROL OF CELL DIVISION CYCLE IN YEAST .3. 7 GENES CONTROLLING NUCLEAR DIVISION [J].
CULOTTI, J ;
HARTWELL, LH .
EXPERIMENTAL CELL RESEARCH, 1971, 67 (02) :389-&
[10]   INTERACTION OF DBF4, THE CDC7 PROTEIN-KINASE REGULATORY SUBUNIT, WITH YEAST REPLICATION ORIGINS IN-VIVO [J].
DOWELL, SJ ;
ROMANOWSKI, P ;
DIFFLEY, JFX .
SCIENCE, 1994, 265 (5176) :1243-1246