Evolutionary optimization techniques on computational grids

被引:0
作者
Abdalhaq, B [1 ]
Cortés, A [1 ]
Margalef, T [1 ]
Luque, E [1 ]
机构
[1] Univ Autonoma Barcelona, ETSE, Dept Informat, Bellaterra 08193, Barcelona, Spain
来源
COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS | 2002年 / 2329卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimization of complex objective functions such as environmental models is a compute-intensive task, difficult to achieve by classical optimization techniques. Evolutionary techniques such as genetic algorithms present themselves as the best alternative to solving this problem. We present a friendly optimization framework for complex objective function on a computational grid platform, which allows easy incorporation of new optimization strategies. This framework was developed using the MW library and the Condor system. The framework architecture is described, and a case study of a forest-fire propagation simulator is then analyzed.
引用
收藏
页码:513 / 522
页数:10
相关论文
共 10 条
  • [1] Back T., 1997, IEEE Transactions on Evolutionary Computation, V1, P3, DOI 10.1109/4235.585888
  • [2] CZYZYK J, 1997, MCSP6151096 ANL
  • [3] FERRIS M, ANLMCSP7080398
  • [4] Geist A, 1994, PVM PARALLEL VIRTUAL
  • [5] An enabling framework for master-worker applications on the computational grid
    Goux, JP
    Kulkarni, S
    Linderoth, J
    Yoder, M
    [J]. NINTH INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE DISTRIBUTED COMPUTING, PROCEEDINGS, 2000, : 43 - 50
  • [6] Heymann E, 2001, LECT NOTES COMPUT SC, V1971, P214
  • [7] JORBA J, 1999, P 13 INT S INF UMW G
  • [8] LINDEROTH J, 2001, 0101 UW MAD
  • [9] LIVNY M, 1999, HIGH RESOURCE MANAGE
  • [10] REIHER E, 1996, P INT C PHOT REM B3, V31, P680