Evolution of fabric anisotropy of granular soils: x-ray tomography measurements and theoretical modelling

被引:48
作者
Zhao, Chao-Fa [1 ]
Pinzon, Gustavo [2 ]
Wiebicke, Max [3 ]
Ando, Edward [2 ]
Kruyt, Niels P. [1 ]
Viggiani, Gioacchino [2 ]
机构
[1] Univ Twente, Dept Mech Engn, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Grenoble Alpes, 3SR, CNRS, Grenoble INP, F-38000 Grenoble, France
[3] Tech Univ Dresden, Inst Geotech, D-01062 Dresden, Germany
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Granular soils; Fabric anisotropy; Shear band; x-ray tomography; Anisotropic critical state theory; CRITICAL-STATE; CONSTITUTIVE MODEL; MICROSTRUCTURE EVOLUTION; SAND; STRESS; STRAIN; DEFORMATION; DILATANCY; BEHAVIOR; FORCE;
D O I
10.1016/j.compgeo.2021.104046
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Fabric anisotropy is a key component to understand the behaviour of granular soils. In general, experimental data on fabric anisotropy for real granular soils are very limited, especially in the critical state. In this paper, xray tomography measurements are used to provide experimental data on contact fabric anisotropy inside shear bands for two granular soils. The data are then used to assess the validity of Anisotropic Critical State Theory (ACST) and the accuracy of a fabric evolution law that was previously developed from the results of DEM simulations on idealised materials. Overall, the experimental results support ACST according to which unique (i. e., independent of initial conditions) values for fabric anisotropy and coordination number are observed at large strains. With increasing roundness of the material, the rate at which the critical state is approached increases. The evolution of fabric anisotropy measured from the experiments is fairly well reproduced by the proposed evolution law.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Fabric evolution of granular soils under multidirectional cyclic loading [J].
Wei, Jiangtao ;
Huang, Duruo ;
Wang, Gang .
ACTA GEOTECHNICA, 2020, 15 (09) :2529-2543
[32]   In Situ X-Ray Tomography Measurements of Deformation in Cellular Solids [J].
E. Maire ;
A. Elmoutaouakkil ;
A. Fazekas ;
L. Salvo .
MRS Bulletin, 2003, 28 :284-289
[33]   In situ X-ray tomography measurements of deformation in cellular solids [J].
Maire, E ;
Elmoutaouakkil, A ;
Fazekas, A ;
Salvo, L .
MRS BULLETIN, 2003, 28 (04) :284-289
[34]   3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography [J].
Imseeh, Wadi H. ;
Druckrey, Andrew M. ;
Alshibli, Khalid A. .
GRANULAR MATTER, 2018, 20 (02)
[35]   Visualization of Failure and the Associated Grain-Scale Mechanical Behavior of Granular Soils under Shear using Synchrotron X-Ray Micro-Tomography [J].
Cheng, Zhuang ;
Wang, Jianfeng .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (151)
[36]   Effect of Fabric Anisotropy on Bifurcation and Shear Band Evolution in Granular Geomaterials [J].
Jiangfang Chang ;
Wei Wang ;
Qinghe Niu ;
Lei Wen ;
Wei Yuan .
KSCE Journal of Civil Engineering, 2021, 25 :2893-2910
[37]   X-ray tomography system to investigate granular materials during mechanical loading [J].
Athanassiadis, Athanasios G. ;
La Riviere, Patrick J. ;
Sidky, Emil ;
Pelizzari, Charles ;
Pan, Xiaochuan ;
Jaeger, Heinrich M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (08)
[38]   Experimental micro-mechanics of granular media studied by x-ray tomography: recent results and challenges [J].
Ando, E. ;
Viggiani, G. ;
Hall, S. A. ;
Desrues, J. .
GEOTECHNIQUE LETTERS, 2013, 3 :142-146
[39]   Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography [J].
Grudzien, K. ;
Niedostatkiewicz, M. ;
Adrien, J. ;
Tejchman, J. ;
Maire, E. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2011, 50 (01) :59-67
[40]   Effect of particle morphology and contacts on particle breakage in a granular assembly studied using X-ray tomography [J].
Karatza, Zeynep ;
Ando, Edward ;
Papanicolopulos, Stefanos-Aldo ;
Viggiani, Gioacchino ;
Ooi, Jin Y. .
GRANULAR MATTER, 2019, 21 (03)