A chaotic vibration energy harvester using magnetic material

被引:15
作者
Sato, Takahiro [1 ]
Igarashi, Hajime [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, Sapporo, Hokkaido 0600814, Japan
关键词
energy harvesting; electromagnetic harvester; wideband harvester; chaotic oscillation;
D O I
10.1088/0964-1726/24/2/025033
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper presents a new wideband electromagnetic vibration energy harvester (VEH) composed of a magnetic core embedded into the coil axis. The magnetic core generates a nonlinear magnetic force, which gives rise to the nonlinearity in the behavior of the VEH. Moreover, the magnetic core increases the flux linkage with the coil. These features improve the operational bandwidth and output power of the VEH. Numerical analysis and experimental measurements reveal that the operational bandwidth of the proposed VEH is over 30 Hz in which the output power is kept about 0.1 mW. Moreover, the proposed VEH operates by complicated oscillation due to nonlinear forces acting on the oscillator. Evaluation of the Lyapunov exponent for the measured oscillation suggests that the proposed VEH produces chaotic oscillation.
引用
收藏
页数:8
相关论文
共 23 条
  • [1] A micro electromagnetic generator for vibration energy harvesting
    Beeby, S. P.
    Torah, R. N.
    Tudor, M. J.
    Glynne-Jones, P.
    O'Donnell, T.
    Saha, C. R.
    Roy, S.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) : 1257 - 1265
  • [2] A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data
    Beeby, Stephen P.
    Wang, Leran
    Zhu, Dibin
    Weddell, Alex S.
    Merrett, Geoff V.
    Stark, Bernard
    Szarka, Gyorgy
    Al-Hashimi, Bashir M.
    [J]. SMART MATERIALS AND STRUCTURES, 2013, 22 (07)
  • [3] The role of coupling strength in the performance of electrodynamic vibrational energy harvesters
    Challa, Vinod R.
    Cheng, Shuo
    Arnold, David P.
    [J]. SMART MATERIALS AND STRUCTURES, 2013, 22 (02)
  • [4] A smart and self-sufficient frequency tunable vibration energy harvester
    Eichhorn, C.
    Tchagsim, R.
    Wilhelm, N.
    Woias, P.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (10)
  • [5] A review of the recent research on vibration energy harvesting via bistable systems
    Harne, R. L.
    Wang, K. W.
    [J]. SMART MATERIALS AND STRUCTURES, 2013, 22 (02)
  • [6] Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation
    Jang, Shinae
    Jo, Hongki
    Cho, Soojin
    Mechitov, Kirill
    Rice, Jennifer A.
    Sim, Sung-Han
    Jung, Hyung-Jo
    Yun, Chung-Bang
    Spencer, Billie F., Jr.
    Agha, Gul
    [J]. SMART STRUCTURES AND SYSTEMS, 2010, 6 (5-6) : 439 - 459
  • [7] A low frequency vibration energy harvester using magnetoelectric laminate composite
    Ju, Suna
    Chae, Song Hee
    Choi, Yunhee
    Lee, Seungjun
    Lee, Hyang Woon
    Ji, Chang-Hyeon
    [J]. SMART MATERIALS AND STRUCTURES, 2013, 22 (11)
  • [8] Energy stored in permanent magnets
    Lovatt, HC
    Watterson, PA
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (01) : 505 - 507
  • [9] Investigations of a nonlinear energy harvester with a bistable potential well
    Mann, B. P.
    Owens, B. A.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2010, 329 (09) : 1215 - 1226
  • [10] Energy harvesting from the nonlinear oscillations of magnetic levitation
    Mann, B. P.
    Sims, N. D.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2009, 319 (1-2) : 515 - 530