Topological pressure for an iterated function system

被引:1
作者
Wang, Huoyun [1 ]
Liao, Xing [1 ]
机构
[1] Guangzhou Univ, Dept Math, Guangzhou, Peoples R China
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2021年 / 36卷 / 03期
关键词
Topological entropy; topological pressure; iterated function system; measure-theoretic entropy; ENTROPY; SEMIGROUP;
D O I
10.1080/14689367.2021.1929081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a notion of topological pressure, which is different from the LMW's and ML's for an iterated function system. We find out the properties of the topological pressure, which are more similar to the properties of the classical topological pressure than LMW's and ML's. For an iterated function system, we obtain a partial variational principle on topological pressure, which improves the LMW's related result. Finally, we give a lower bound estimation of the topological pressure for a Ruelle-expanding iterated function system. In particular, we point out the exponential growth rate of fixed points is a lower bound of WLLZ's topological entropy for a Ruelle-expanding iterated function system.
引用
收藏
页码:483 / 506
页数:24
相关论文
共 50 条
  • [1] Topological entropy pairs for an iterated function system
    Wang, Huoyun
    Liao, Xing
    Liu, Qing
    Zeng, Peng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (02)
  • [2] ON TOPOLOGICAL ENTROPY AND TOPOLOGICAL PRESSURE OF NON-AUTONOMOUS ITERATED FUNCTION SYSTEMS
    Ghane, Fatemeh H.
    Sarkooh, Javad Nazarian
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1561 - 1597
  • [3] Topological entropy of induced spaces for an iterated function system
    Peng, Dongmei
    Liu, Lei
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2025, 31 (04) : 478 - 489
  • [4] Topological Entropy, Topological Pressure and Topological Pseudo Entropy of Iterated Function Systems on Uniform Spaces
    Singh, Moirangthem Binodkumar
    Devi, Thiyam Thadoi
    Mangang, Khundrakpam Binod
    Wang, Huoyun
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [5] TOPOLOGICAL ENTROPY OF ONE DIMENSIONAL ITERATED FUNCTION SYSTEMS
    Nia, Mehdi Fatehi
    Moeinaddini, Fatemeh
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (04): : 681 - 699
  • [6] A Variational Principle of the Topological Pressures for Non-autonomous Iterated Function Systems
    Cui, Mengxin
    Li, Zhiming
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (04)
  • [7] A TOPOLOGICAL VERSION OF ITERATED FUNCTION SYSTEMS
    Mihail, Alexandru
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2012, 58 (01): : 105 - 120
  • [8] Topological properties of the attractors of iterated function systems
    Dumitru, Dan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (03): : 117 - 126
  • [9] Entropy of Non-autonomous Iterated Function Systems
    Ju, Yujun
    Liu, Huoxia
    Yang, Qigui
    RESULTS IN MATHEMATICS, 2024, 79 (05)
  • [10] THE CONLEY ATTRACTORS OF AN ITERATED FUNCTION SYSTEM
    Barnsley, Michael F.
    Vince, Andrew
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (02) : 267 - 279