Metal/III-V Schottky barrier height tuning for the design of nonalloyed III-V field-effect transistor source/drain contacts

被引:72
作者
Hu, Jenny [1 ]
Saraswat, Krishna C. [1 ]
Wong, H. -S. Philip [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Paul G Allen Ctr Integrated Syst, Stanford, CA 94305 USA
关键词
aluminium; contact resistance; erbium; field effect transistors; gallium arsenide; III-V semiconductors; indium compounds; Schottky barriers; titanium; tungsten; work function; yttrium; LOGIC APPLICATIONS; HIGH-PERFORMANCE; MOSFETS;
D O I
10.1063/1.3327434
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, we introduce a novel nonalloyed contact structure for n-GaAs and n-In0.53Ga0.47As by using single metals in combination with a thin dielectric to tune the effective metal/III-V work function toward the conduction band edge. We reduced the effective Schottky barrier height (Phi(B,eff)) of Al/GaAs from 0.75 to 0.17 eV through the use of a thin atomic layer deposition Al2O3. Barrier height reduction was verified for a variety of metals (Y, Er, Al, Ti, and W) through direct measurements and deduced from increased diode current and reduced contact resistance. Similar results were observed on n-In0.53Ga0.47As. Two possible underlying mechanisms are discussed: one based on the formation of a dielectric dipole and the other based on the blocking of metal induced gap states. This structure has applications as a nonalloyed low resistance ohmic contact for III-V metal-oxide-semiconductor field-effect transistors (MOSFETs) or high electron mobility transistors (HEMTs), and as a near zero barrier height contact for III-V Schottky barrier field-effect transistors or diodes.
引用
收藏
页数:6
相关论文
共 21 条
[1]   Benchmarking nanotechnology for high-performance and low-power logic transistor applications [J].
Chau, R ;
Datta, S ;
Doczy, M ;
Doyle, B ;
Jin, J ;
Kavalieros, J ;
Majumdar, A ;
Metz, M ;
Radosavljevic, M .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (02) :153-158
[2]   HfO2 gate dielectric on (NH4)2S passivated (100) GaAs grown by atomic layer deposition [J].
Chen, P. T. ;
Sun, Y. ;
Kim, E. ;
McIntyre, P. C. ;
Tsai, W. ;
Garner, M. ;
Pianetta, P. ;
Nishi, Y. ;
Chui, C. O. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (03)
[3]  
CHIN HC, 2009, IEEE S VLSI TECH, P244
[4]   New route to zero-barrier metal source/drain MOSFETs [J].
Connelly, D ;
Faulkner, C ;
Grupp, DE ;
Harris, JS .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2004, 3 (01) :98-104
[5]  
COSS BE, 2009, IEEE S VLSI TECH, P104
[6]   THEORY OF SURFACE STATES [J].
HEINE, V .
PHYSICAL REVIEW, 1965, 138 (6A) :1689-&
[7]   GaAs interfacial self-cleaning by atomic layer deposition [J].
Hinkle, C. L. ;
Sonnet, A. M. ;
Vogel, E. M. ;
McDonnell, S. ;
Hughes, G. J. ;
Milojevic, M. ;
Lee, B. ;
Aguirre-Tostado, F. S. ;
Choi, K. J. ;
Kim, H. C. ;
Kim, J. ;
Wallace, R. M. .
APPLIED PHYSICS LETTERS, 2008, 92 (07)
[8]  
HU J, 2009, IEEE VLSI TSA, P123
[9]  
HU J, 2008, DEV RES C, V66, P89
[10]   Heterogeneous integration of enhancement mode In0.7Ga0.3As quantum well transistor on silicon substrate using thin (≤ 2 gm) composite buffer architecture for high-speed and low-voltage (0.5V) logic applications [J].
Hudait, M. K. ;
Dewey, G. ;
Datta, S. ;
Fastenau, J. M. ;
Kavalieros, J. ;
Liu, W. K. ;
Lubyshev, D. ;
Pillarisetty, R. ;
Rachmady, W. ;
Radosavljevic, M. ;
Rakshit, T. ;
Chau, Robert .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :625-+