AVERAGE OPTIONS FOR JUMP DIFFUSION MODELS

被引:0
|
作者
Kunita, Hiroshi [1 ]
Yamada, Takuya [1 ]
机构
[1] Nanzan Univ, Dept Math Sci, Nagoya, Aichi 4668673, Japan
关键词
Mathematical finance for jump diffusion process; Ito's formula for jumps process; Girsanov's theorem for jumps process; option pricing for jump diffusion;
D O I
10.1142/S0217595910002612
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the problem of pricing average strike options in the case where the price processes are jump diffusion processes. As to the striking value we take the geometric average of the price process. Two cases are studied in details: One is the case where the jumping law of the price process is subject to a Gaussian distribution called Merton model, and the other is the case where the jumping law is subject to a double exponential distribution called Kou model. In both cases the price of the average strike option is represented as a time average of a suitable European put option.
引用
收藏
页码:143 / 166
页数:24
相关论文
共 50 条
  • [1] AMERICAN OPTIONS AND JUMP-DIFFUSION MODELS
    ZHANG, XL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 857 - 862
  • [2] Pricing Average and Spread Options Under Local-Stochastic Volatility Jump-Diffusion Models
    Shiraya, Kenichiro
    Takahashi, Akihiko
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (01) : 303 - 333
  • [3] Pricing Cliquet options in jump-diffusion models
    Yan, HF
    Yang, JQ
    Liu, LM
    STOCHASTIC MODELS, 2005, 21 (04) : 875 - 884
  • [4] Continuity Correction for Barrier Options in Jump-Diffusion Models
    Dia, El Hadj Aly
    Lamberton, Damien
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2011, 2 (01): : 866 - 900
  • [5] Pricing options in jump-diffusion models: An extrapolation approach
    Feng, Liming
    Linetsky, Vadim
    OPERATIONS RESEARCH, 2008, 56 (02) : 304 - 325
  • [6] IMEX schemes for pricing options under jump-diffusion models
    Salmi, Santtu
    Toivanen, Jari
    APPLIED NUMERICAL MATHEMATICS, 2014, 84 : 33 - 45
  • [7] Pricing perpetual options with jump diffusion
    Tongji University, Shanghai 200092, China
    Xitong Gongcheng Lilum yu Shijian, 2008, 2 (10-18):
  • [8] PRICING ASIAN OPTIONS FOR JUMP DIFFUSION
    Bayraktar, Erhan
    Xing, Hao
    MATHEMATICAL FINANCE, 2011, 21 (01) : 117 - 143
  • [9] JUMP DIFFUSION OPTIONS WITH TRANSACTION COSTS
    Mocioalca, Oana
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (03): : 349 - 366
  • [10] Hedging of options for jump-diffusion stochastic volatility models by Malliavin calculus
    Minoo Bakhshmohammadlou
    Rahman Farnoosh
    Mathematical Sciences, 2021, 15 : 337 - 343