Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion

被引:29
作者
Hu, Yaozhong [1 ]
Nualart, David [2 ]
Zhou, Hongjuan [3 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB, Canada
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
Fractional Brownian motion; parameter estimation; nonlinear stochastic differential equation; one-sided dissipative Lipschitz condition; maximum inequality; moment estimate; H?lder continuity; strong consistency;
D O I
10.1080/17442508.2018.1563606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the strong consistency of the least squares estimator (LSE) for the drift coefficient of a fractional stochastic differential system. The drift coefficient is one-sided dissipative Lipschitz and the driving noise is additive and fractional with Hurst parameter . We assume that continuous observation is possible. The main tools are ergodic theorem and Malliavin calculus. As a by-product, we derive a maximum inequality for Skorohod integrals, which plays an important role to obtain the strong consistency of the LSE.
引用
收藏
页码:1067 / 1091
页数:25
相关论文
共 13 条
[1]   An extension of Ito's formula for anticipating processes [J].
Alos, E ;
Nualart, D .
JOURNAL OF THEORETICAL PROBABILITY, 1998, 11 (02) :493-514
[2]  
Alos E., 1997, PROGR SYSTEMS CONTRO, V23
[3]  
[Anonymous], 1982, LECT NOTES CONTROL I
[4]  
Chen Y, 2017, ALEA-LAT AM J PROBAB, V14, P613
[5]   On the 1/H-variation of the divergence integral with respect to fractional Brownian motion with Hurst parameter H < 1/2 [J].
Essaky, E. Hassan ;
Nualart, David .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) :4117-4141
[6]   Discretization of Stationary Solutions of Stochastic Systems Driven by Fractional Brownian Motion [J].
Garrido-Atienza, Maria J. ;
Kloeden, Peter E. ;
Neuenkirch, Andreas .
APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 60 (02) :151-172
[7]   Ergodicity of stochastic differential equations driven by fractional Brownian motion [J].
Hairer, M .
ANNALS OF PROBABILITY, 2005, 33 (02) :703-758
[8]   COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS [J].
HSU, PL ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) :25-31
[9]  
Hu Y., STAT INFERENCE STOCH
[10]   Parameter estimation for fractional Ornstein-Uhlenbeck processes [J].
Hu, Yaozhong ;
Nualart, David .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) :1030-1038