Micromechanical multiscale fracture model for compressive strength of blended cement pastes

被引:103
作者
Hlobil, Michal [1 ,2 ]
Smilauer, Vit [1 ]
Chanvillard, Gilles [3 ]
机构
[1] Czech Tech Univ, Fac Civil Engn, Dept Mech, Thakurova 7, Prague 16629 6, Czech Republic
[2] Vienna Univ Technol TU Wien, Inst Mech Mat & Struct IMWS, Karlspl 13-202, A-1040 Vienna, Austria
[3] Lafarge Ctr Rech, 95 Rue Montmurier, F-38290 St Quentin Fallavier, France
关键词
Compressive strength; Calcium-Silicate-Hydrate (C-S-H); Microstructure; Cement paste; Blended cement; CALCIUM-SILICATE-HYDRATE; C-S-H; ELASTIC PROPERTIES; MICROSTRUCTURE; DAMAGE; STIFFNESS; RATIO; SIZE;
D O I
10.1016/j.cemconres.2015.12.003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The evolution of compressive strength belongs to the most fundamental properties of cement paste. Driven by an increasing demand for clinker substitution, the paper presents a new four-level micromechanical model for the prediction of compressive strength of blended cement pastes. The model assumes that the paste compressive strength is governed by apparent tensile strength of the C-S-H globule. The multiscale model takes into account the volume fractions of relevant chemical phases and encompasses a spatial gradient of C-S-H between individual grains. The presence of capillary pores, the C-S-H spatial gradient, clinker minerals, SCMs, other hydration products, and air further decrease compressive strength. Calibration on 95 experimental compressive strength values shows that the apparent tensile strength of the C-S-H globule yields approx. 320 MPa. Sensitivity analysis reveals that the "C-S-H/space" ratio, followed by entrapped or entrained air and the spatial gradient of C-S-H, have the largest influence on compressive strength. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:188 / 202
页数:15
相关论文
共 49 条
[21]   Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension [J].
Grassl, Peter ;
Jirasek, Milan .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (7-8) :957-968
[22]  
Griffith A.A, 1924, P 1 INT C APPL MECH, P55
[23]   Modeling the linear elastic properties of Portland cement paste [J].
Haecker, C ;
Garboczi, EJ ;
Bullard, JW ;
Bohn, RB ;
Sun, Z ;
Shah, SP ;
Voigt, T .
CEMENT AND CONCRETE RESEARCH, 2005, 35 (10) :1948-1960
[24]  
HERSHEY AV, 1954, J APPL MECH-T ASME, V21, P236
[25]   Refinements to colloid model of C-S-H in cement: CM-II [J].
Jennings, Hamlin M. .
CEMENT AND CONCRETE RESEARCH, 2008, 38 (03) :275-289
[26]   A model for the microstructure of calcium silicate hydrate in cement paste [J].
Jennings, HM .
CEMENT AND CONCRETE RESEARCH, 2000, 30 (01) :101-116
[27]  
Jirasek M., 2002, Inelastic Analysis of Structures
[28]   Localization properties of strain-softening gradient plasticity models. Part I: Strain-gradient theories [J].
Jirasek, Milan ;
Rolshoven, Simon .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (11-12) :2225-2238
[29]   Determination of the size of the representative volume element for random composites: statistical and numerical approach [J].
Kanit, T ;
Forest, S ;
Galliet, I ;
Mounoury, V ;
Jeulin, D .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (13-14) :3647-3679
[30]   Meso-scale computational modeling of the plastic-damage response of cementitious composites [J].
Kim, Sun-Myung ;
Abu Al-Rub, Rashid K. .
CEMENT AND CONCRETE RESEARCH, 2011, 41 (03) :339-358