Effects of demographic stochasticity on biological community assembly on evolutionary time scales

被引:10
作者
Murase, Yohsuke [1 ]
Shimada, Takashi [1 ]
Ito, Nobuyasu [1 ]
Rikvold, Per Arne [2 ,3 ]
机构
[1] Univ Tokyo, Dept Appl Phys, Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan
[2] Florida State Univ, Ctr Mat Res & Technol, Tallahassee, FL 32306 USA
[3] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 04期
关键词
LONG-TERM EVOLUTION; TANGLED NATURE; MODEL; STABILITY; COMPLEX; FLUCTUATIONS; NETWORK; BIODIVERSITY; CONNECTANCE; COEVOLUTION;
D O I
10.1103/PhysRevE.81.041908
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the effects of demographic stochasticity on the long-term dynamics of biological coevolution models of community assembly. The noise is induced in order to check the validity of deterministic population dynamics. While mutualistic communities show little dependence on the stochastic population fluctuations, predator-prey models show strong dependence on the stochasticity, indicating the relevance of the finiteness of the populations. For a predator-prey model, the noise causes drastic decreases in diversity and total population size. The communities that emerge under influence of the noise consist of species strongly coupled with each other and have stronger linear stability around the fixed-point populations than the corresponding noiseless model. The dynamics on evolutionary time scales for the predator-prey model are also altered by the noise. Approximate 1/f fluctuations are observed with noise, while 1/f(2) fluctuations are found for the model without demographic noise.
引用
收藏
页数:14
相关论文
共 46 条
[21]   Evolving complex food webs [J].
McKane, AJ .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :287-295
[22]   Extinction risk depends strongly on factors contributing to stochasticity [J].
Melbourne, Brett A. ;
Hastings, Alan .
NATURE, 2008, 454 (7200) :100-103
[23]   Fluctuations and correlations in lattice models for predator-prey interaction -: art. no. 040903 [J].
Mobilia, M ;
Georgiev, IT ;
Täuber, UC .
PHYSICAL REVIEW E, 2006, 73 (04)
[24]   Phase transitions and spatio-temporal fluctuations in stochastic lattice Lotka-Volterra models [J].
Mobilia, Mauro ;
Georgiev, Ivan T. ;
Taeuber, Uwe C. .
JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (1-2) :447-483
[25]  
MURASE Y, J THEOR BIO IN PRESS
[26]  
Newman M.E., 2003, MODELING EXTINCTION
[27]   Emergence of cooperation and evolutionary stability in finite populations [J].
Nowak, MA ;
Sasaki, A ;
Taylor, C ;
Fudenberg, D .
NATURE, 2004, 428 (6983) :646-650
[28]   Stochastic model for the species abundance problem in an ecological community [J].
Pigolotti, S ;
Flammini, A ;
Maritan, A .
PHYSICAL REVIEW E, 2004, 70 (01) :5
[29]   A tale of two cycles - distinguishing quasi-cycles and limit cycles in finite predator-prey populations [J].
Pineda-Krch, Mario ;
Blok, Hendrik J. ;
Dieckmann, Ulf ;
Doebeli, Michael .
OIKOS, 2007, 116 (01) :53-64
[30]   Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model [J].
Reichenbach, Tobias ;
Mobilia, Mauro ;
Frey, Erwin .
PHYSICAL REVIEW E, 2006, 74 (05)