A fixed point theorem and the Ulam stability in generalized dq-metric spaces

被引:32
作者
Brzdek, Janusz [1 ]
Karapinar, Erdal [2 ]
Petrusel, Adrian [3 ,4 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Mickiewicza 30, PL-30059 Krakow, Poland
[2] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
[3] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca, Romania
[4] Acad Romanian Scientists, Bucharest, Romania
关键词
Fixed point; Ulam stability; Dq-metric; Ultrametric; Quasinorm; p-norm; FUNCTIONAL-EQUATIONS; HYERS;
D O I
10.1016/j.jmaa.2018.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a fixed point theorem for function spaces, that is a very efficient and convenient tool for the investigations of various operator inequalities connected to Ulam stability issues, in classes of functions taking values in various spaces (e.g., in ultrametric spaces, dq-metric spaces, quasi-Banach spaces, and p-Banach spaces). The theorem is a natural generalization and extension of the classical Banach Contraction Principle and some other more recent results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:501 / 520
页数:20
相关论文
共 55 条
[1]   Stability of functional equations in single variable [J].
Agarwal, RP ;
Xu, B ;
Zhang, WN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) :852-869
[2]   Metric-like spaces, partial metric spaces and fixed points [J].
Amini-Harandi, A. .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[3]  
[Anonymous], NONLINEAR FUNCT ANAL
[4]  
[Anonymous], PERTURBATION METHODS
[5]  
[Anonymous], 1999, ADV EQU INEQUAL HADR
[6]  
[Anonymous], B ST U POLITEHNICA T
[7]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[8]  
[Anonymous], 1899, JAHRESBERICHT DTSCH
[9]  
[Anonymous], 2000, GEOMETRIC NONLINEAR
[10]  
Aoki T., 1942, P IMP ACAD TOKYO, V18, P588, DOI DOI 10.3792/PIA/1195573733