Electric field and ionization-gradient effects on inertial-confinement-fusion implosions

被引:25
作者
Amendt, P. A. [1 ]
Milovich, J. L. [1 ]
Wilks, S. C. [1 ]
Li, C. K. [2 ]
Petrasso, R. D. [2 ]
Seguin, F. H. [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
NATIONAL IGNITION FACILITY; TARGETS;
D O I
10.1088/0741-3335/51/12/124048
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The generation of strong, self-generated electric fields (10(8)-10(9) V m(-1)) in direct-drive, inertial-confinement-fusion capsules has been reported (Li et al 2008 Phys. Rev. Lett. 100 225001). Various models are considered herein to explain the observed electric field evolution, including the potential roles of electron pressure gradients near the fuel-pusher interface and plasma polarization effects that are predicted to occur across shock fronts (Zel'dovich and Raizer 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Mineola, NY: Dover) p 522). In the latter case, strong fields in excess of 10(10) V m(-1) and localized to 10-100 nm may be consistent with the data obtained from proton radiography. Such field strengths are similar in magnitude to the criterion for runaway electron generation that could lead to plasma kinetic effects and potential shock-front broadening. The observed electric field generation may also be partly due to plasma ionization gradients localized near the fuel-pusher interface. A model is proposed that allows for differing electron-and ion-density gradient scale lengths in the presence of ionization gradients while preserving overall charge neutrality. Such a redistribution of electrons compared with standard, charge-neutral, single-fluid radiation-hydrodynamics modelling may affect the interpretation of imploded-core x-ray diagnostics as well as alter alpha particle deposition in the thermonuclear fuel.
引用
收藏
页数:12
相关论文
共 16 条
  • [1] Hohlraum-driven high-convergence implosion experiments with multiple beam cones on the Omega laser facility
    Amendt, P
    Turner, RE
    Landen, OL
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (16)
  • [2] Effects of ionization gradients on inertial-confinement-fusion capsule hydrodynamic stability
    Amendt, Peter
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (11)
  • [3] The instabilities induced by electrostatic fields and gradients in a plasma shock front
    He, Yong
    Hu, Xiwei
    Jiang, Zhonghe
    Lue, Jianhong
    [J]. PHYSICS OF PLASMAS, 2008, 15 (01)
  • [4] The properties and structure of a plasma non-neutral shock
    Hu, YM
    Hu, XW
    [J]. PHYSICS OF PLASMAS, 2003, 10 (07) : 2704 - 2711
  • [5] STRUCTURE OF A PLASMA SHOCK WAVE
    JAFFRIN, MY
    PROBSTEIN, RF
    [J]. PHYSICS OF FLUIDS, 1964, 7 (10) : 1658 - 1674
  • [6] Core temperature and density profile measurements in inertial confinement fusion implosions
    Koch, J. A.
    Izumi, N.
    Welser, L. A.
    Mancini, R. C.
    Haan, S. W.
    Lee, R. W.
    Amendt, P. A.
    Barbee, T. W., Jr.
    Dalhed, S.
    Fujita, K.
    Golovkin, I. E.
    Klein, L.
    Landen, O. L.
    Marshall, F. J.
    Meyerhofer, D. D.
    Nishimura, H.
    Ochi, Y.
    Regan, S.
    Sangster, T. C.
    Smalyuk, V.
    Tommasini, R.
    [J]. HIGH ENERGY DENSITY PHYSICS, 2008, 4 (1-2) : 1 - 17
  • [7] Krall N., 1973, Principles of Plasma Physics actic
  • [8] Observations of Electromagnetic Fields and Plasma Flow in Hohlraums with Proton Radiography
    Li, C. K.
    Seguin, F. H.
    Frenje, J. A.
    Petrasso, R. D.
    Amendt, P. A.
    Town, R. P. J.
    Landen, O. L.
    Rygg, J. R.
    Betti, R.
    Knauer, J. P.
    Meyerhofer, D. D.
    Soures, J. M.
    Back, C. A.
    Kilkenny, J. D.
    Nikroo, A.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [9] Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion
    Li, C. K.
    Seguin, F. H.
    Rygg, J. R.
    Frenje, J. A.
    Manuel, M.
    Petrasso, R. D.
    Betti, R.
    Delettrez, J.
    Knauer, J. P.
    Marshall, F.
    Meyerhofer, D. D.
    Shvarts, D.
    Smalyuk, V. A.
    Stoeckl, C.
    Landen, O. L.
    Town, R. P. J.
    Back, C. A.
    Kilkenny, J. D.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (22)
  • [10] The physics basis for ignition using indirect-drive targets on the National Ignition Facility
    Lindl, JD
    Amendt, P
    Berger, RL
    Glendinning, SG
    Glenzer, SH
    Haan, SW
    Kauffman, RL
    Landen, OL
    Suter, LJ
    [J]. PHYSICS OF PLASMAS, 2004, 11 (02) : 339 - 491